首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shi H  Yang Y  Huang J  Zhao Z  Xu X  Anzai J  Osa T  Chen Q 《Talanta》2006,70(4):852-858
An amperometric choline biosensor was developed by immobilizing choline oxidase (ChOx) in a layer-by-layer (LBL) multilayer film on a platinum (Pt) electrode modified with Prussian blue (PB). 6-O-Ethoxytrimethylammoniochitosan chloride (EACC) was used to prepare the ChOx LBL films. The choline biosensor was used at 0.0 V versus Ag/AgCl to detect choline and exhibited good characteristics such as relative low detection limit (5 × 10−7 M), short response time (within 10 s), high sensitivity (88.6 μA mM−1 cm−2) and a good selectivity. The results were explained based on the ultrathin nature of the LBL films and the low operating potential that could be due to the efficient catalytic reduction of H2O2 by PB. In addition, the effects of pH, temperature and applied potential on the amperometric response of choline biosensor were evaluated. The apparent Michaelis-Menten constant was found to be (0.083 ± 0.001) ×10−3 M. The biosensor showed excellent long-term storage stability, which originates from a strong adsorption of ChOx in the EACC multilayer film. When the present choline biosensor was applied to the analysis of phosphatidylcholine in serum samples, the measurement values agreed satisfactorily with those by a hospital method.  相似文献   

2.
Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 μA mM−1 cm−2 was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 μM and a response time of 3 s, respectively.  相似文献   

3.
A water-dispersible multi-walled carbon nanotubes (MWCNTs) derivative, MWCNTs-1-one-dihydroxypyridine (MWCNTs-Py) was synthesis via Friedel–Crafts chemical acylation. Raman spectra demonstrated the conjugated level of MWCNTs-Py was retained after this chemical modification. MWCNTs-Py showed dual hydrogen peroxide (H2O2) and glucose detections without mutual interference by adjusting pH value. It was sensitive to H2O2 in acidic solution and displayed the high performances of sensitivity, linear range, response time and stability; meanwhile it did not respond to H2O2 in neutral solution. In addition, this positively charged MWCNTs-Py could adsorb glucose oxidase (GOD) by electrostatic attraction. MWCNTs-Py-GOD/GC electrode showed the direct electron transfer (DET) of GOD with a pair of well-defined redox peaks, attesting the bioactivity of GOD was retained due to the non-destroyed immobilization. The high surface coverage of active GOD (3.5 × 10−9 mol cm−2) resulted in exhibiting a good electrocatalytic activity toward glucose. This glucose sensor showed high sensitivity (68.1 μA mM−1 cm−2) in a linear range from 3 μM to 7 mM in neutral buffer solution. The proposed sensor could distinguish H2O2 and glucose, thus owning high selectivity and reliability.  相似文献   

4.
Sulfonated graphene nanosheet/gold nanoparticle (SGN/Au) hybrid was synthesized by electrostatic self-assembly of anionic SGN and positively charged gold nanoparticles. Due to the well-dispersivity of SGN in aqueous solution and its adequate negative charge, Au nanoparticles were assembled uniformly on graphene surface with high distribution. With the advantages of both graphene and Au nanoparticles, SGN/Au hybrid showed enhanced electrocatalytic activity towards O2 reduction. Furthermore, it provided a conductive and favorable microenvironment for the glucose oxidase (GOD) immobilization and thus promoted its direct electron transfer at the glassy carbon electrode. Based on the consumption of O2 caused by glucose at the interface of GOD electrode modified with SGN/Au hybrid, the modified electrode displayed satisfactory analytical performance, including high sensitivity (14.55 μA mM?1 cm?2), low detection limit (0.2 mM), an acceptable linear range from 2 to 16 mM, and also the prevention from the interference of some species. These results indicated that the prepared SGN/Au hybrid is a promising candidate material for high-performance glucose biosensor.  相似文献   

5.
Chunhui Xiao 《Talanta》2010,80(5):1719-9434
Polymerized ionic liquid-wrapped carbon nanotubes (PIL-CNTs) were firstly designed for direct electrochemistry and biosensing of redox proteins. The CNTs were coated successfully with polymerized ionic liquid (PIL) layer, as verified by transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. The PIL-CNTs were dispersed better in water and showed superior electrocatalysis toward O2 and H2O2 comparing to pristine CNTs and the mixture of IL monomer and CNTs. With glucose oxidase (GOD) as a protein model, the direct electrochemistry of the redox protein was investigated on the PIL-CNTs modified glassy carbon (GC) electrode and excellent direct electrochemical performance of GOD molecules was observed. The proposed biosensor (GOD/PIL-CNTs/GC electrode) displayed good analytical performance for glucose with linear response up to 6 mM, response sensitivity of 0.853 μA mM−1, good stability and selectivity.  相似文献   

6.
A new nanomaterial was prepared by grafting a layer of sulfonated polyaniline network (SPAN-NW) on to the surface of multi-walled carbon nanotube (MWNT) and effectively utilized for immobilization of an enzyme and for the fabrication of a biosensor. SPAN-NW was formed on the surface of MWNT by polymerizing a mixture of diphenyl amine 4-sulfonic acid (DPASA), 4-vinyl aniline (VA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (APASA) in the presence of amine functionalized MWNT (MWNT-NH2). The MWNT-g-SPAN-NW was immobilized with glucose oxidase (GOx) to fabricate the SPAN-NW/GOx biosensor. MWNT-g-SPAN-NW/GOx electrode showed direct electron transfer (DET) for GOx with a fast heterogeneous electron transfer rate constant (ks) of 4.11 s− 1. The amperometric current response of MWNT-g-SPAN-NW/GOx biosensor shows linearity up to 9 mM of glucose, with a correlation coefficient of 0.99 and a detection limit of 0.11 μM (S/N = 3). At a low applied potential of − 0.1 V, MWNT-g-SPAN-NW/GOx electrode possesses high sensitivity (4.34 μA mM− 1) and reproducibility towards glucose.  相似文献   

7.
We utilized CuNiO nanoparticles modified graphene sheets (CuNiO–graphene) to the application of enzymeless glucose sensing. The hydrothermal synthesized CuNiO nanoparticles were successfully assembled on graphene sheets. Distinct from general method, the high quality pristine graphene was produced by chemical vapor deposition (CVD) and bubbling transferred on the electrode. Incorporating the excellent electronic transport of graphene and high electrocatalytic activity of CuNiO nanoparticles, the CuNiO–graphene nanocomposite modified electrode possessed strong electrocatalytic ability toward glucose in alkaline media. The proposed nonenzymatic glucose sensor exhibited wide linear range up to 16 mM (two parts, from 0.05 to 6.9 mM and 6.9–16 mM) and high sensitivity (225.75 μA mM−1 cm−2 and 32.44 μA mM−1 cm−2, respectively). Excellent selectivity and acceptable stability were also achieved. Such an electrode would be attractive to sensor construction for its good properties, simple operation and low expense.  相似文献   

8.
Zhong H  Yuan R  Chai Y  Li W  Zhong X  Zhang Y 《Talanta》2011,85(1):104-111
A new glucose amperometric biosensor, based on electrodeposition of platinum nanoparticles onto the surface of multi-wall carbon nanotube (MWNT)-polyaniline (PANI) nanocomposites, and then immobilizing glucose oxidase (GOD) with covalent interaction and adsorption effect, was constructed in this paper. Firstly, the MWNT-PANI nanocomposites had been synthesized by in situ polymerization and were characterized through transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and ultraviolet and visible (UV-vis) absorption spectra. The assembled process of the modified electrode was probed by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Chronoamperometry was used to study the electrochemical performance of the resulting biosensor. The glucose biosensor exhibited a linear calibration curve over the range from 3.0 μM to 8.2 mM, with a detection limit of 1.0 μM and a high sensitivity of 16.1 μA mM−1. The biosensor also showed a short response time (within 5 s). Furthermore, the reproducibility, stability and interferences of the biosensor were also investigated.  相似文献   

9.
A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at −0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 × 103 μA mM−1 cm−2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

10.
A novel, simple and facile layer by layer (LBL) approach is used for modification of glassy carbon (GC) electrode with multilayer of catalase and nanocomposite containing 1-(3-Aminopropyl)-3-methylimidazolium bromide (amine terminated ionic liquid (NH2-IL)) and titanium nitride nanoparticles (TiNnp). First a thin layer of NH2-IL is covalently attached to GC/TiNnp electrode using electro-oxidation method. Then, with alternative self assemble positively charged NH2-IL and negatively charged catalase a sensitive H2O2 biosensor is constructed, whose response is directly correlated to the number of bilayers. The surface coverage of active catalase per bilayer, heterogeneous electron transfer rate constant (ks) and Michaelis–Menten constant (KM) of immobilized catalase were 3.32 × 10−12 mol cm−2, 5.28 s−1 and 1.1 mM, respectively. The biosensor shows good stability, high reproducibility, long life-time, and fast amperometric response with the high sensitivity of 380 μA mM−1 cm−2 and low detection limit of 100 nM at concentration range up to 2.1 mM.  相似文献   

11.
Jianwen Wang  Yifeng Tu 《Talanta》2009,77(4):1454-4466
A novel disposable third-generation hydrogen peroxide (H2O2) biosensor based on horseradish peroxidase (HRP) immobilized on the gold nanoparticles (AuNPs) electrodeposited indium tin oxide (ITO) electrode is investigated. The AuNPs deposited on ITO electrode were characterized by UV-vis, SEM, and electrochemical methods. The AuNPs attached on the ITO electrode surface with quasi-spherical shape and the average size of diameters was about 25 nm with a quite symmetric distribution. The direct electron chemistry of HRP was realized, and the biosensor exhibited excellent performances for the reduction of H2O2. The amperometric response to H2O2 shows a linear relation in the range from 8.0 μmol L−1 to 3.0 mmol L−1 and a detection limit of 2 μmol L−1 (S/N = 3). The value of HRP immobilized on the electrode surface was found to be 0.4 mmol L−1. The biosensor indicates excellent reproducibility, high selectivity and long-term stability.  相似文献   

12.
A porous organic-inorganic hybrid sol-gel carbon composite has been developed and used for surface covalent bonding of an enzyme for biosensing applications, illustrated by glucose oxidase (GOD). The composite comprises graphite powder, ferrocene, and an amino- and methyl-silicate backbone. The graphite powder provides the conductivity for the electrode and ferrocene acts as the mediator for signal transduction from the active center of the enzyme to the electron conductive surface. The presence of amine groups in the sol-gel silicate network allows for the covalent bonding sites for the enzyme via the carbodiimide reaction. The hydrophobicity and hydrophilicity properties of the electrode surface are controlled by the amine and methyl groups of the silicate network. Systematic optimization of the composite composition has been carried out and the performance of the glucose biosensor has been investigated. The optimal electrode gives a linear response range of 0.1-27 mM glucose with a sensitivity of 1.30 μA mM−1 and detection limit (S/N = 3) of 26 μM.  相似文献   

13.
Hua MY  Chen HC  Tsai RY  Lai CS 《Talanta》2011,85(1):631-637
The imine of polybenzimidazole (PBI) is chemically oxidized by hydrogen peroxide (H2O2) in the presence of acetic acid (AcOH). Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopies (XPS) showed that when the AcOH concentration remained constant, the degree of oxidation increased with increasing H2O2 levels. Moreover, the imine also exhibited electrochemical redox behavior. Based on these properties, a PBI-modified Au (PBI/Au) electrode was developed as an enzyme-free H2O2 sensor. At an applied potential of −0.5 V vs. Ag/AgCl, the current response of the PBI/Au electrode was linear with H2O2 concentration over a range from 0.075 to 1.5 mM, with a sensitivity of 55.0 μA mM−1 cm−2. The probe had excellent stability, with <5% variation from its initial response current after storage at 50 °C for 10 days. Potentially interfering species such as ascorbic or uric acid had no effect on sensitivity. Sensitivity improved dramatically when multiwalled carbon nanotubes (MWCNT) were incorporated in the probe. Under optimal conditions, the detection of H2O2 using a MWCNT-PBI/Au electrode was linear from 1.56 μM to 2.5 mM, with a sensitivity of 928.6 μA mM−1 cm−2. Analysis of H2O2 concentrations in urine samples using a MWCNT-PBI/Au electrode produced accurate real-time results comparable to those of traditional HPLC methods.  相似文献   

14.
Some nanostructures are reported to possess enzyme-mimetic activities similar to those of natural enzymes. Herein, highly-dispersed Pt nanodots on Au nanorods (HD- PtNDs@AuNRs) with mimetic peroxidase activity were designed as an active electrode modifier for fabrication of a hydrogen peroxide (H2O2) electrochemical sensor. The HD-PtNDs@AuNRs were synthesized by a seed-mediated growth approach and confirmed by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. The electrochemical and catalytical performances of HD-PtNDs@AuNRs towards H2O2 reduction were investigated in detail by cyclic voltammetry and amperometry. The HD-PtNDs@AuNRs modified electrode displayed a high catalytic activity to H2O2 at −0.10 V (versus SCE), a rapid response within 5 s, a wide linear range of 2.0–3800.0 μM, a detection limit of 1.2 μM (S/N = 3), and a high sensitivity of 181 μA mM−1 cm−2. These results suggested a promising potential of fabricating H2O2 electrochemical sensor using HD- PtNDs@AuNRs.  相似文献   

15.
Liying Wang 《Talanta》2009,78(1):265-3377
Based on well-known silver mirror reaction the Ag film was formed on Au film modified by self-assembled monolayer (SAM) of 1,6-hexanedithiol (HDT). The sensitivity of the biosensor based on this Ag/Au film is enhanced compared to that based on Au film. When the surface plasmon resonance (SPR) biosensor based on this Ag/Au film was used to determine human IgG, the range of concentrations of human IgG that could be determined is 0.30-40.00 μg mL−1. The lowest concentration (0.30 μg mL−1) that could be detected was about 8 times lower than that obtained by the biosensor without modification by Ag film (2.50 μg mL−1), which demonstrated that the biosensor based on Ag/Au film could make the resonant wavelength move to longer wavelength following with the sensitivity enhancement of the SPR biosensor.  相似文献   

16.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

17.
Arrays of nanoscopic gold tubes were prepared by electroless plating of the metal within the pores of nanoporous polycarbonate track-etched membranes. A procedure for fabricating an ensemble of enzyme-modified nanoelectrodes has been developed based on the efficient immobilization of horseradish peroxidase (HRP) to the gold nanotubes array using self-assembled monolayers (mercaptoethylamine or mercaptopropionic acid) as anchoring layers. Hydrogen peroxide (H2O2) was determined electrochemically by using gold nanoelectrode ensembles (NEE) functionalized or not in phosphate buffer solution (PB) with or without a mediator (hydroquinone, H2Q). Bare NEE displays a remarkable sensitivity (14 μA mM−1 in H2Q at −0.1 V versus Ag/AgCl) compared to a classical gold macroelectrode (0.41 μA mM−1). The gold nanoparticles that form the tubular structure act as excellent catalytic surfaces towards the oxidation and the reduction of H2O2. The HRP modified NEE presents a slightly lower sensitivity (9.5 μA mM−1) than bare NEE. However, this system presents an enhanced limit of detection (up to 4 × 10−6 M) and a higher selectivity towards the detection of H2O2 over a wide range of potentials. The lifetime, fabrication reproducibility and measurement repeatability of the HRP enzyme electrode were evaluated with satisfactory results.  相似文献   

18.
Li J  Yu J  Zhao F  Zeng B 《Analytica chimica acta》2007,587(1):33-40
The direct electrochemistry of glucose oxidase (GOD) entrapped in nano gold particles (NAs)-N,N-dimethylformamide (DMF)-1-butyl-3-methylimidazolium hexafluophosphate (BMIMPF6) composite film on a glassy carbon electrode (NAs-DMF-GOD (BMIMPF6)/GC) has been investigated for first time. The immobilized GOD exhibits a pair of well-defined reversible peaks in 0.050 M pH 5 phosphate solutions (PS), resulting from the redox of flavin adenine dinucleotide (FAD) in GOD. The peak currents are three times as large as those of GOD-NAs-DMF film coated GC electrode (i.e. NAs-DMF-GOD (water)/GC). In addition, the NAs-DMF-GOD (BMIMPF6) composite material has higher thermal stability than NAs-DMF-GOD (water). Results show that ionic liquid BMIMPF6, DMF and NAs are requisite for GOD to exhibit a pair of stable and reversible peaks. Without any of them, the peaks of GOD become small and unstable. Upon the addition of glucose, the peak currents of GOD decrease and a new cathodic peak occurs at −0.8 V (versus SCE), which corresponds to the reduction of hydrogen peroxide (H2O2) generated by the catalytic oxidation of glucose. The peak current of the new cathodic peak and the glucose concentration show a linear relationship in the ranges of 1.0 × 10−7 to 1.0 × 10−6 M and 2.0 × 10−6 to 2.0 × 10−5 M. The kinetic parameter Imax of H2O2 is estimated to be 1.19 × 10−6 A and the apparent Km (Michaelis-Menten constant) for the enzymatic reaction is 3.49 μM. This method has been successfully applied to the determination of glucose in human plasma and beer samples, and the average recoveries are 97.2% and 99%, respectively.  相似文献   

19.
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0×10−5 and 1.3×10−3 M glucose. The biosensor showed a good suppression of interference in the amperometric detection.  相似文献   

20.
In this study, gold microelectrode array (Au/MEA) with electrode of 12 μm diameter was fabricated by photolithography technique. Subsequently, polypyrrole (Ppy) modified gold microarrays sensor (Ppy/Au/MEA) was prepared by cyclic voltammetry technique. The deposition potential range and number of cycles were optimised in order to get optimum thickness of Ppy film. Scanning Electron Microscope and Atomic Force Microscope investigations reveal that Ppy coating formed at 3 cycles is porous with thickness of 1.5 μm which exhibiting high catalytic current for ascorbic acid (AA) in square wave technique (SWV). In contrast to earlier sensors designs, these Ppy/Au/MEA sensors exhibits lower detection limit (LOD) of 10 nm towards AA at physiological conditions. It also exhibits enhanced sensitivity (2.5 mA cm−2 mM−1) and long range of linear detection limit from 10 nm to 2.8 mM. In the same way, polypyrrole modified macro Au (Ppy/Au/MA) biosensor was also fabricated and its electro catalytic property towards AA was compared with that of Ppy/Au/MEA. The Ppy/Au/MA exhibits sensitivity of only 0.27 mA cm−2 mM−1, LOD of 5 μM and linear range of 10 μM to 2.2 mM. Hence, our investigations indicate that the Ppy/Au/MEA could serve as highly sensitive sensor for AA than any of the earlier designs. So, the Ppy/Au/MEA electrode was utilised for determination AA in a wide variety of real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号