首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
The primary objective of this review is to discuss recent technological developments in the field of solid-phase microextraction that have enhanced the utility of this sample preparation technique in the field of bioanalysis. These developments include introduction of various new biocompatible coating phases suitable for bioanalysis, such as commercial prototype in vivo SPME devices, as well as the development of sampling interfaces that extend the use of this methodology to small animals such as mice. These new devices permit application of in vivo SPME to a variety of analyses, including pharmacokinetics, bioaccumulation and metabolomics studies, with good temporal and spatial resolution. New calibration approaches have also been introduced to facilitate in vivo studies and provide fast and quantitative results without the need to achieve equilibrium. In combination with the drastic improvement in the analytical sensitivity of modern liquid chromatography–tandem mass spectrometry instrumentation, full potential of in vivo SPME as a sample preparation tool in life sciences can finally be explored. From the instrumentation perspective, SPME was successfully automated in 96-well format for the first time. This opens up new opportunities for high-throughput applications (>1000 samples/day) such as for the determination of unbound and total drug concentrations in complex matrices such as whole blood with no need for sample pretreatment, studies of distribution of drugs in various compartments and/or determination of plasma protein binding and other ligand–receptor binding studies, and this review will summarize the progress in this research area to date.  相似文献   

2.
This paper describes a method for determination of multiwall carbon nanotubes (MWCNTs) in rat lungs after intratracheal instillation exposure. The MWCNTs were quantitatively decomposed to CO2 by combustive oxidation and were then determined by non-dispersive infrared analysis. Samples were pretreated by acid digestion, muffle ashing and in situ preheating to remove interferences due to coexisting biological carbon from the lung tissue sample, while preserving the MWCNTs as in its their original form. The preservation was confirmed by transmission electron microscopic observation of the pretreated samples of exposed lung tissues and by the fact that the recoveries of MWCNTs spiked to the lung tissues were close to 100%. The detection limit for MWCNTs obtained by the proposed method was 0.30 μg and the repeatability as expressed by the relative standard deviation was 5.6% (n = 4). The method was sufficiently sensitive and precise to apply to real samples of rat lung to investigate the in vivo persistence of intratracheally instilled MWCNTs. To our knowledge, this is the first report of this type of sample pretreatment and direct determination of pristine MWCNTs without modification or tagging. Conventional indirect methods use tagging with other compounds or metal impurities in the CNTs for detection, and the detachment of these tags can increase uncertainties in the determination of the CNTs. The tags can also change how the CNTs persist in vivo, which can lead to an incorrect understanding of the persistence of pristine CNTs in vivo.  相似文献   

3.
On-site sample preparation is an analytical approach based on direct sampling from the system under investigation. It has the advantage of combining sampling and sample preparation into a single step, thus generally is fast, minimizes the potential sources of error and eliminates the risks for analytes instability. For such analysis solid phase microextraction in thin film geometry (TF-SPME) can provide robust and convenient in vivo sampling, offering in the same time faster analysis and higher extraction recovery (i.e., better sensitivity) due to large surface to volume ratio.  相似文献   

4.
Cerebrospinal fluid (CSF) contains valuable biological and neurological information. However, its glycomics analysis is hampered due to the low amount of protein in the biofluid, as has been demonstrated by other glycomics studies using a substantial amount of CSF. In this work, we investigated different N-glycan sample preparation approaches to develop a more sensitive method. These methods, one with an increased amount of buffer solution during the N-glycan release step with a lower amount of sample volume and the other with Filter-Aided N-Glycan Separation (FANGS), were compared with recent work to demonstrate their effectiveness. It was demonstrated that an increased amount of buffer solution showed higher intensity in comparison to the previously published method and FANGS. This suggested that digestion efficiency during the N-glycan release step was not in an optimal condition from the previously published method, and that there is a substantial loss of sample with FANGS when preparing N-glycans from CSF.  相似文献   

5.
With the fast development of microalgal biofuel researches, the proteomics studies of microalgae increased quickly. A filter-aided sample preparation (FASP) method is widely used proteomics sample preparation method since 2009. Here, a method of microalgae proteomics analysis based on modified filter-aided sample preparation (mFASP) was described to meet the characteristics of microalgae cells and eliminate the error caused by over-alkylation. Using Chlamydomonas reinhardtii as the model, the prepared sample was tested by standard LC-MS/MS and compared with the previous reports. The results showed mFASP is suitable for most of occasions of microalgae proteomics studies.  相似文献   

6.
This review covers the state of the art of the analysis of real (or non-ideal) samples on microfluidic devices. A real sample analysis performed on microfluidics conceptually involves the complete integration of sample preparation, analyte separation, and detection on these platforms. Different “lab-on-a-chip” approaches have emerged in relevant application areas such as clinical, environmental, and food analysis which will be critically illustrated and discussed with respect to the strengths and weakness found. Likewise, the main challenges and perspectives will also be commented on.  相似文献   

7.
Rapid, simple and cost-effective analytical methods with performance characteristics matching regulatory requirements are needed for effective control of occurrence of Fusarium toxins in cereals and cereal-based products to which they might be transferred during processing. Within this study, two alternative approaches enabling retrospective data analysis and identification of unknown signals in sample extracts have been implemented and validated for determination of 11 major Fusarium toxins. In both cases, ultra-high performance liquid chromatography (U-HPLC) coupled with high resolution mass spectrometry (HR MS) was employed. 13C isotopically labeled surrogates as well as matrix-matched standards were employed for quantification. As far as time of flight mass analyzer (TOF-MS) was a detection tool, the use of modified QuEChERS (quick easy cheap effective rugged and safe) sample preparation procedure, widely employed in multi-pesticides residue analysis, was shown as an optimal approach to obtain low detection limits. The second challenging alternative, enabling direct analysis of crude extract, was the use of mass analyzer based on Orbitrap technology. In addition to demonstration of full compliance of the new methods with Commission Regulation (EC) No. 401/2006, also their potential to be used for confirmatory purposes according to Commission Decision 2002/657/EC has been critically assessed.  相似文献   

8.
As a very popular sample preparation technique, solid-phase microextraction (SPME) coupled with various analytical instrumentation, has been widely used for the determination of trace levels of different plant compounds, such as volatile organic compounds (VOCs) emitted from the different plant organs, and environmental contaminants in plants. In this review, recent applications of in vitro and in vivo SPME in plant analysis are discussed and summarized according to the different organs of plants, including fruits, flowers, leaves, stems, roots and seeds, and the whole plant as well. Future developments and applications of SPME in plant analysis, especially in vivo sampling approaches, are also prospected.  相似文献   

9.
An immunosensor assay for the quantitation of intracellular recombinant human superoxide dismutase (rhSOD) in Escherichia coli cultivations based on detection with surface plasmon resoance (SPR) is described. A monoclonal antibody for rhSOD was immobilized on a SPR dextran gold chip. Bacterial samples were sonicated and centrifugated prior to injection over the antibody chip for SPR detection. The assay time was 7 min and allowed quantitation in the range of 1-64 nM SOD in lysate samples with a precision of 1.1-3.4%. The assay was applied to monitor the concentration of rhSOD during E. coli bioreactor cultivations where the rhSOD production was induced by iso-propyl-b-d-thiogalactoside (IPTG). The assay allowed accurate monitoring of the production of rhSOD where the important phases in the product formation were possible to see. The report also discusses influence from sample preparation, SPR selectivity and sensitivity and quantitation limits. The assay proved to be fast, sensitive and accurate with low background effects from the dextran matrix of the SPR chip.  相似文献   

10.
The solid phase microextraction (SPME) technique with on-fiber derivatization was evaluated for the analysis of alkylphenols (APs), including 4-tert-octylphenol (4-t-OP), technical nonylphenol isomers (t-NPs) and 4-nonylphenol (4-NP), in water. The 85 μm polyacrylate (PA) fiber was used and a two-step sample preparation procedure was established. In the first step, water sample of 2 mL was placed in a 4 mL PTFE-capped glass vial. Headspace extraction of APs in water was then performed under 65 °C for 30 min with 800 rpm magnetic stirring and the addition of 5% of sodium chloride. In the second step, the SPME fiber was placed in another 4 mL vial, which contained 100 μL of N-tert-butyl-dimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) with 1% tert-butyl-dimethylchlorosilane (TBDMCS). Headspace extraction of MTBSTFA and on-fiber derivatization with APs were performed at 45 °C for 10 min. Gas chromatography/mass spectrometry (GC/MS) was used for the analysis of derivatives formed on-fiber. The adsorption-time profiles were also examined. The precision, accuracy and method detection limits (MDLs) for the analysis of all the APs were evaluated with spiked water samples, including detergent water, chlorinated tap water, and lake water. The relative standard deviations were all less than 10% and the accuracies were 100 ± 15%. With 2 mL of water sample, MDLs were in the range of 1.58-3.85 ng L−1. Compared with other techniques, the study described here provided a simple, fast and reliable method for the analysis of APs in water.  相似文献   

11.
An in situ application of solid-phase microextraction (SPME) as a sampling and sample preparation method coupled to HPLC-MS/MS for direct monitoring of ochratoxin A (OTA) distribution at different locations in a single cheese piece is proposed. To be suited to the acidic analyte, the extraction phase (carbon-tape SPME fiber) was acidified with aqueous solution of HCl at pH 2, instead of the traditional sample pre-treatment with acids before SPME sampling. For calibration, kinetic on-fiber-standardization was used, which allowed the use of short sampling time (20 min) and accurate quantification of the OTA in the semi-solid cheese sample. In addition, the traditional kinetic calibration that used deuterated compounds as standards was extended to use a non-deuterated analogue ochratoxin B (OTB) as the standard of the analyte OTA, which was supported by both theoretical discussion and experimental verification. Finally, the miniaturized SPME fiber was adopted so that the concentration distribution of OTA in a small-sized cheese piece could be directly probed. The detection limit of the resulting SPME method in semi-solid gel was 1.5 ng/mL and the linear range was 3.5–500 ng/mL. The SPME–LC-MS/MS method showed good precision (RSD: ∼10%) and accuracy (relative recovery: 93%) in the gel model. The direct cheese analysis showed comparable accuracy and precision to the established liquid extraction. As a result, the developed in situ SPME–LC-MS/MS method was sensitive, simple, accurate and applicable for the analysis of complicated lipid-rich samples such as cheese.  相似文献   

12.
A rapid, green and effective miniaturized sample preparation and analytical technique, i.e. ionic liquids-assisted microwave distillation coupled with headspace single-drop microextraction (ILAMD-HS-SDME) followed by gas chromatography–mass spectrometry (GC–MS) was developed for the analysis of essential oil (EO) in Fructus forsythiae. In this work, ionic liquids (ILs) were not only used as the absorption medium of microwave irradiation but also as the destruction agent of plant cell walls. 1-Ethyl-3-methylimidazolium acetate ([C2mim]OAc) was chosen as the optimal ILs. Moreover, n-heptadecane (2.0 μL) was selected as the appropriate suspended solvent for the extraction and concentration of EO. Extraction conditions of the proposed method were optimized using the relative peak area of EO constituents as the index, and the optimal operational parameters were obtained as follows: irradiation power (300 W), sample mass (0.7 g), mass ratio of ILs to sample (2.4), temperature (78 °C) and time (3.4 min). In comparison to previous reports, the proposed method was faster and required smaller sample amount but could equally monitor all EO constituents with no significant differences.  相似文献   

13.
The authors have demonstrated the Hf(OTf)4-doped Me3SiCl system-catalyzed aminomethylation of electron-rich aromatic compounds, such as indoles and anilines, with new types of N,O-acetals having a variety of functional groups, such as cyano, ester, bis(trimethylsilyl)amino, diallylamino, and cyclic amino moieties, for the preparation of non-natural aromatic amino acid derivatives. Aminomethylation using an N,O-acetal with a bis(trimethylsilyl)amino group was particularly successful in the direct preparation of an N-unsubstituted α-indolylglycine derivative, which required only a standard aqueous workup.  相似文献   

14.
A simple and scalable method for the preparation of N-Cbz protected amino acids is presented which uses a mixture of aqueous sodium carbonate and sodium bicarbonate to maintain the appropriate pH during the addition of benzyl chloroformate. The method has been extended to other N-protections and is amenable to large scale preparation of an intermediate toward Zofenopril, an ACE inhibitor.  相似文献   

15.
Atmospheric aerosol particles, collected with the particle-into-liquid sampler at SMEARII station in Finland in mid-August 2007, were analysed for biogenic acids. The sample pretreatment method, comprising solid-phase extraction with anion exchange and hydrophilic-lipophilic balance materials, was optimized. Extraction efficiencies of solid-phase extraction from 10 and 20 ml samples were about 100%, with average relative standard deviation of 8.9%, in concentration range from 12.5 to 50 ng/ml of the acid. Extraction of aldehydes was less successful, with efficiencies from 69 to 163% and average 10% deviation. Pretreated samples were analysed by reversed phase high performance liquid chromatography with ion trap mass spectrometric detection. Limits of detection achieved for organic acids with the analytical procedure developed ranged from 9 to 27 μg/l of extracted sample, while limits of quantitation were from 31 to 90 μg/l. Oxidation with ozone was used for the preparation of the acid of β-caryophyllene (β-caryophyllinic acid), which was also studied in aerosol samples. MS2 experiments were used to confirm the identification of trans-pinic, trans-pinonic and β-caryophyllinic acids. Azelaic, hexadecanoic, cis-pinonic, and cis- and trans-pinic acids were quantitated in the samples with use of authentic standards, while the concentrations of trans-pinonic and β-caryophyllinic acids were determined with cis-pinonic acid as surrogate. Also, the contribution of β-caryophyllene oxidation products to aerosol organic carbon was evaluated. Aldehydes could not be analysed in real samples due to the insufficient extraction. The particle-into-liquid sampler proved to be suitable for the collection of aerosol particles for the elucidation of daily and diurnal variation of selected species. The optimized sample pretreatment, together with the analysis method, offer a promising approach for the study of aerosol chemical composition, where artifact formation is minimal and time resolution is good.  相似文献   

16.
Indoxyl sulfate and p-cresyl sulfate are protein-bound marker molecules in chronic kidney disease. Recent findings suggest that indoxyl sulfate and p-cresyl sulfate directly contribute to the uremic syndrome. A method for quantification of p-cresyl sulfate and indoxyl sulfate total serum concentrations was developed. We used sodium octanoate as competitor to replace non-covalent binding of p-cresyl sulfate and indoxyl sulfate to albumin. Total, within-run, between-run and between-day imprecision for indoxyl sulfate and p-cresyl sulfate were all below 6%. The limit of quantification was 3.2 μM for both analytes. Recovery, tested in hemodialysis patients, was 102% for indoxyl sulfate and 105% for p-cresyl sulfate. Deming regression demonstrated good agreement for indoxyl sulfate between this new method and an external HPLC method. Method comparison for p-cresyl sulfate of the new method with our in-house GC–MS method demonstrated good agreement, whereas method comparison with an external HPLC method revealed a small proportional bias. Sodium octanoate binding competition is a novel sample preparation that allows for direct quantification of indoxyl sulfate and p-cresyl sulfate.  相似文献   

17.
The aim of this study was developing a supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) method and an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method, for the analysis of N-acetyl-serotonin (NAS) and melatonin (Mel) in human serum, and to compare the performance of these methods. Deuterated isotopologues of the neurotransmitters were synthesized and evaluated for suitability as internal standards in sample preparation. Liquid-liquid extraction was selected as sample preparation procedure. With chloroform, the best extraction solvent tested, an extraction yield of 48 ± 2% for N-acetyl-serotonin and 101 ± 10% for melatonin was achieved. SFC separation was accomplished within 3 min on a BEH stationary phase, employing isocratic elution with 90% carbon dioxide and 0.1% formic acid as well as 0.05% ammonium formate in methanol. For the 4 min UHPLC gradient separation with 0.1% formic acid in water and methanol, respectively, a Kinetex XB-C18 was used as stationary phase. Both chromatographic techniques were optimized regarding mobile phase composition, additives to the mobile phase and column temperature. Multiple reaction monitoring (MRM) analysis was used for quantification of the metabolites. Both methods were validated regarding retention time stability, LOD, LOQ, repeatability and reproducibility of quantification, process efficiency, extraction recovery and matrix effects. LOD and LOQ were 0.017 and 0.05 pg μL−1 for NAS and 0.006 and 0.018 pg μL−1 for Mel in SFC-MS/MS compared to 0.028 and 0.1 pg μL−1 for NAS and 0.006 and 0.017 pg μL−1 for Mel in UHPLC-MS/MS.  相似文献   

18.
In metabolomics, the workflow for quantitative and comprehensive metabolic mapping of cellular metabolites can be a very challenging undertaking. Sampling and sample preparation play a significant role in untargeted analysis, as they may affect the composition of the analyzed metabolome. In the current work, different solid phase microextraction (SPME) coating chemistries were developed and applied to provide simultaneous extraction of a wide range of both hydrophobic and hydrophilic cellular metabolites produced by a model organism, Escherichia coli. Three different LC-MS methods were also evaluated for analysis of extracted metabolites. Finally, over 200 cellular metabolites were separated and detected with widely varying hydrophobicities ranging within −7 < log P < 15, including amino acids, peptides, nucleotides, carbohydrates, polycarboxylic acids, vitamins, phosphorylated compounds, and lipids such as hydrophobic phospholipids, prenol lipids, and fatty acids at the stationary phase of the E. coli life cycle using the developed 96-blade SPME-LC-MS method.  相似文献   

19.
The aim of this study is to validate isotope-dilution electrospray ionization tandem mass spectrometry (ESI-MS-MS) method with a dual-loop cleanup device for simultaneous quantitation of two benzene metabolites, trans, trans-muconic acid (ttMA) and S-phenylmercapturic acid (SPMA), in human urine. In this study, a pooled blank urine matrix from rural residents was adopted for validation of the analytical method. The calibration curve, detection limit, recovery, precision, accuracy and the stability of sample storage for the system have been characterized. Calibration plots of ttMA and SPMA standards spiked into two kinds of urine matrixes over a wide concentration range, 1/32-8-fold biological exposure indices (BEIs) values, showed good linearity (R > 0.9992). The detection limits in pooled urine matrix for ttMA and SPMA were 1.27 and 0.042 μg g−1 creatinine, respectively. For both of ttMA and SPMA, the intra- and inter-day precision values were considered acceptable well below 25% at the various spiked concentrations. The intra- and inter-day apparent recovery values were also considered acceptable (apparent recovery >90%). The ttMA accuracy was estimated by urinary standard reference material (SRM). The accuracy reported in terms of relative error (RE) was 5.0 ± 2.0% (n = 3). The stability of sample storage at 4 or −20 °C were assessed. Urinary ttMA and SPMA were found to be stable for at least 8 weeks when stored at 4 or −20 °C. In addition, urine samples from different benzene exposure groups were collected and measured in this system. Without tedious manual sample preparation procedure, the analytical system was able to quantify simultaneously ttMA and SPMA in less than 20 min.  相似文献   

20.
A novel method has been developed for simultaneous analysis of paclitaxel (PTX) and retinoic acid (ATRA) in mice plasma and tissue homogenates. The analyte was isolated by liquid?Cliquid partitioning, to minimize analyte degradation, and fractions were analyzed by liquid chromatography?Cmass spectrometry (LC?CMS). Liquid?Cliquid extraction with tert-butyl methyl ether was used for sample preparation and docetaxel was used as internal standard (IS). Separation of PTX, ATRA, and the IS was performed on a C18 column with gradient elution and detection by use of a single-quadrupole mass spectrometer in selected-ion-monitoring mode. The method had high extraction recovery (>85%) and accuracy (>90%), with intra-day and inter-day precision <15%, and was rugged with good linearity. The limits of quantitation were determined to be 2 and 4 ng mL?1 for PTX and ATRA, respectively. Freeze?Cthaw stability, short-term stability, long-term stability, and sample stability in the autosampler tray were examined; this indicated freezing and thawing during bio-sample preparation should be avoided, but no other stability-related problems occurred during sample storage, extraction, and chromatography of PTX and ATRA in plasma and tissue samples. The assay was successfully used for simultaneous analysis of PTX and ATRA in mice plasma and different tissues to support pharmacokinetic and in-vivo distribution studies of the two drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号