首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在研究闭式多面体(HAlNH)12簇合物几何构型及稳定性的基础上, 用DFT的B3LYP方法在6-31G(d)的水平上, 对其内含式复合物X@(HAlNH)12 (X= Be, Mg, Ca, Zn, Al+, Ga+)进行了构型优化和能量计算, 并讨论了稳定结构的几何构型、自然键轨道(NBO)、振动频率、能量参数及NMR数据与结构的关系. 用Gaussian 03的QST3方法确定了客体X通过笼面6-元环的迁移过渡态(TS)结构, 并用IRC方法对所得TS结构进行了验证. 最后得到内含式复合物X@(HAlNH)12结构在热力学和动力学上的稳定性信息, 其中复合物Ga+@(HAlNH)12的结构相对最稳定.  相似文献   

2.
内含式化合物X@Al12P12的结构与稳定性研究   总被引:1,自引:0,他引:1  
武海顺  张竹霞 《化学学报》2005,63(11):973-978,i001
采用B3LYP/6—31G*方法,对内含式化合物X@Al12P12(X=Li^0/ ,Na^0/ ,K^0/2 ,Be^0/2 ,Mg^0/2 ,Ca^0/2 ,H和He)的不同对称性构型进行计算,讨论其最稳定构型的几何参数、布居分析、偶极矩、电离势、包含能、频率、HOMO—LUMO能隙和自旋密度.发现X@Al12P12化合物中,客体X=Na^0/ ,K^0/ ,Mg和He几乎处在笼的中心,Be和Ca^0/2 处在中心附近0.033nm的半径内,Li^0/ ,Be^2 ,Mg^2 和H很大程度上偏离笼的中心位置.大部分金属内含式化合物的C3对称性构型稳定.Li^0/ 。,Be^0/2 ,Mg^2 ,Ca^2 和H与其它离子相比更易嵌入笼内形成稳定的内含式化合物.  相似文献   

3.
采用B3LYP/6-31G*方法,对内含式化合物X@B12P12(X=Li0/+、Na0/+、K0/+、Be0/2+、Mg0/2+、Ca0/2+、H和He)的不同对称性构型进行了计算,讨论其最稳定构型的几何参数、布居分析、偶极矩、电离势、包含能、振动频率、能隙和自旋密度. 发现在X@B12P12化合物中,客体X=Li、Na0/+、K0/+、Mg0/2+、Ca0/2+和He处在偏离笼的中心0.006 nm的半径内. Be2+沿着C3轴偏离中心点0.279 nm. 在Be@B12P12和H@B12P12的基态结构中,Be和H与笼上的B原子成键. 除Li@B12P12、 Be2+@B12P12和He@ B12P12外, 其余结构为Cs对称稳定构型.  相似文献   

4.
C(7)H(12)(2+) (1), the prototype hexacoordinate carbonium dication was found to be a viable minimum at the MP2/6-31G** and MP2/cc-pVTZ levels. Structure 1 is a propeller shaped molecule resembling a complex involving a C(2+) with three ethylene molecules resulting in the formation of three two-electron, three-center (2e-3c) bonds. Isomeric structure 2 was found to be 21.8 kcal/mol more stable than structure 1. However, conversion of 1 into 2 through transition structure 3 has a barrier of 5.7 kcal/mol. Related structures 4, 5, and 8 were also located as minima for C(7)H(12)(2+). The isoelectronic boron analogue BC(6)H(12)(+) (10) was also computed to be a minimum at the same level of calculations.  相似文献   

5.
The carbon soot obtained by electric arc vaporization of carbon rods doped with Sm(2)O(3) contains a series of monometallic endohedral fullerenes, Sm@C(2n), along with smaller quantities of the dimetallic endohedrals Sm(2)@C(2n) with n = 44, 45, 46, and the previously described Sm(2)@D(3d)(822)-C(104). The compounds Sm(2)@C(2n) with n = 44, 45, 46 were purified by high pressure liquid chromatography on several different columns. For endohedral fullerenes that contain two metal atoms, there are two structural possibilities: a normal dimetallofullerene, M(2)@C(2n), or a metal carbide, M(2)(μ-C(2))@C(2n-2). For structural analysis, the individual Sm(2)@C(2n) endohedral fullerenes were cocrystallized with Ni(octaethylporphyrin), and the products were examined by single-crystal X-ray diffraction. These data identified the three new endohedrals as normal dimetallofullerenes and not as carbides: Sm(2)@D(2)(35)-C(88), Sm(2)@C(1)(21)-C(90), and Sm(2)@D(3)(85)-C(92). All four of the known Sm(2)@C(2n) endohedral fullerenes have cages that obey the isolated pentagon rule (IPR). As the cage size expands in this series, so do the distances between the variously disordered samarium atoms. Since the UV/vis/NIR spectra of Sm(2)@D(2)(35)-C(88) and Sm(2)@C(1)(21)-C(90) are very similar to those of Gd(2)C(90) and Gd(2)C(92), we conclude that Gd(2)C(90) and Gd(2)C(92) are the carbides Gd(2)(μ-C(2))@D(2)(35)-C(88) and Gd(2)(μ-C(2))@C(1)(21)-C(90), respectively.  相似文献   

6.
Ab initio calculations at the MP4(SDTQ)/6-311G//MP2/6-31G level were performed to study the structures and stabilities of the dimer of ethyl cation, (C(2)H(+)(5))(2), and related C(4)H(10)(2+) isomers. Two doubly hydrogen bridged diborane type trans 1 and cis 2 isomers were located as minima. The trans isomer was found to be more favorable than cis isomer by only 0.6 kcal/mol. Several other minima for C(4)H(10)(2+) were also located. However, the global energy minimum corresponds to C-H (C(4) position) protonated 2-butyl cation 10. Structure 10 was computed to be substantially more stable than 1 by 31.7 kcal/mol. The structure 10 was found to be lower in energy than 2-butyl cation 13 by 34.4 kcal/mol.  相似文献   

7.
Heterofullerenes C(58)(BN), C(54)(BN)(3), C(48)(BN)(6), and C(12)(BN)(24) and their hexaanions as well as the C(58)(BN) dimer have been investigated by ab initio calculations. On the basis of the computed nucleus independent chemical shifts (NICS) at the cage center and also at the center of individual rings, BN-doped fullerenes C(58)(BN), C(54)(BN)(3), and C(48)(BN)(6) are slightly more aromatic than C(60), whereas the corresponding hexaanions are significantly less aromatic than C(60)(6)(-). The predicted NICS values may be useful for the identification of the heterofullerenes through their endohedral (3)He NMR chemical shifts. Compared to C(60), the dimerization of C(58)(BN) is calculated to be more exothermic by 16 kcal/mol.  相似文献   

8.
Endohedral CH(4)@(H(2)O)(n) (n = 16, 18, 20, 22, 24) clusters with standard and nonstandard cage configurations containing four-, five-, six-, seven-membered rings were generated by spiral algorithm and were systematically explored using DFT-D methods. The geometries of all isomers were optimized in vacuum and aqueous solution. In vacuum, encapsulation of methane molecules can stabilize the hollow (H(2)O)(n) cage by 2.31~5.44 kcal/mol; but the endohedral CH(4)@(H(2)O)(n) cages are still less stable than the pure (H(2)O)(n) clusters. Aqueous environment could promote the stabilities of the hollow (H(2)O)(n) cages as well as the CH(4)@(H(2)O)(n) clusters, and the CH(4)@(H(2)O)(n) clusters possess larger stabilization energies with regard to the pure (H(2)O)(n) clusters except for n = 24. The lowest energy structures of the CH(4)@(H(2)O)(20) and CH(4)@(H(2)O)(24) cages are identical to the building units in the crystalline sI clathrate hydrate. All of the low-energy cages (including both regular and irregular ones) have large structural similarity and can be connected by "dimer-insertion" operation and Stone-Wales transformation. Our calculation also showed that in the range of cluster size n = 16-24, the relative energies of cage isomers tend to decrease with increasing number of the adjacent pentagons in the oxygen skeleton structures. In addition to the regular endohedral CH(4)@(H(2)O)(20) and CH(4)@(H(2)O)(24) cage structures, some nonstandard CH(4)@(H(2)O)(n) (n = 18, 20, 22, 24) cages have lower energies and might appear during nucleation process of methane hydrate. For the methane molecules in these low-energy cage isomers, we found that the C-H symmetric stretching frequencies show a red-shift trend and the (13)C NMR chemical shifts generally move toward negative values as the cavity size increases. These theoretical results are comparable to the available experimental data and might help experimental identification of the endohedral water cages during nucleation.  相似文献   

9.
Nickel and palladium atoms with their closed-shell d(10) electronic configurations are encapsulated in the icosahedral clusters [Ni@Ni(10)E(2)(CO)(18)](4-)(E = Sb, Bi, Sb[rightward arrow]Ni(CO)(3), CH(3)Sn and n-C(4)H(9)Sn) and the geometrically related pentagonal antiprismatic cluster Pd@Bi(10)(4+) found in Bi(14)PdBr(16). Such endohedral d(10) atoms in pentagonal antiprismatic clusters are donors of zero skeletal electrons and interact only weakly with the atoms in the surrounding polyhedron so that they may be regarded as analogous to endohedral noble gases in fullerenes such as He@C(60). On the other hand, endohedral nickel and palladium atoms in 10- and 11-vertex flattened deltahedral bare metal clusters of group 13 metals without five-fold symmetry, such as Ni@E(10)(10-) found in Na(10)NiE(10)(E = Ga, In) and Pd@Tl(11)(7-) found in A(8)Tl(11)Pd (A = Cs, Rb, K), interact significantly with the cluster atoms, particularly those at the flattened vertices of the deltahedron. The role of endohedral d(10) atoms Ni and Pd in polyhedra with five-fold symmetry as "pseudo-noble-gases" can be related to their positions at the "composite divide" of the "Metallurgists' Periodic Table" proposed by H. E. N. Stone on the basis of alloy systematics as well as the equivalence of the five d orbitals in polyhedra with five-fold symmetry.  相似文献   

10.
Ab initio MP2/6-311G and QCISD(T)/6-311G levels as well as Gaussian-2 theory were used to perform a comparative study of the structures and stabilities of the ethane dication C(2)H(6)(2+) and its silicon analogues Si(2)H(6)(2+) and CSiH(6)(2+). Similar to previous HF/6-31G results, our present calculations also indicate that the two-electron three-center (2e-3c) bonded carbonium-carbenium structure 1 is more stable than the doubly hydrogen bridged diborane-type structure 2 by about 12 kcal/mol. For the silicon analogue Si(2)H(6)(2+) the calculations, however, indicate that the 2e-3c bonded siliconium-silicenium structure 8 is about 9 kcal/mol less stable than doubly hydrogen bridged structure 9. Similar results were also computed for carbon-silicon mixed CSiH(6)(2+) dication structures. These studies are in agreement with the more electropositive character of silicon compared to carbon. Possible dissociation paths of the minimum structures were also calculated.  相似文献   

11.
The dimetallic endohedral heterofullerene (EHF), Gd(2)@C(79)N, was prepared and isolated in a relatively high yield when compared with the earlier reported heterofullerene, Y(2)@C(79)N. Computational (DFT), chemical reactivity, Raman, and electrochemical studies all suggest that the purified Gd(2)@C(79)N, with the heterofullerene cage, (C(79)N)(5-) has comparable stability with other better known isoelectronic metallofullerene (C(80))(6-) cage species (e.g., Gd(3)N@C(80)). These results describe an exceptionally stable paramagnetic molecule with low chemical reactivity with the unpaired electron spin density localized on the internal diatomic gadolinium cluster and not on the heterofullerene cage. EPR studies confirm that the spin state of Gd(2)@C(79)N is characterized by a half-integer spin quantum number of S = 15/2. The spin (S = ?) on the N atom of the fullerene cage and two octet spins (S = 7/2) of two encapsulated gadoliniums are coupled with each other in a ferromagnetic manner with a small zero-field splitting parameter D. Because the central line of Gd(2)@C(79)N is due to the Kramer's doublet with a half-integer spin quantum number of S = 15/2, this relatively sharp line is prominent and the anisotropic nature of the line is weak. Interestingly, in contrast with most Gd(3+) ion environments, the central EPR line (g = 1.978) is observable even at room temperature in a toluene solution. Finally, we report the first EHF derivative, a diethyl bromomalonate monoadduct of Gd(2)@C(79)N, which was prepared and isolated via a modified Bingel-Hirsch reaction.  相似文献   

12.
The usual assumption of the extra stability of icosahedral boranes (2) over pentagonal-bipyramidal boranes (1) is reversed by substitution of a vertex by a group 13 metal. This preference is a result of the geometrical requirements for optimum overlap between the five-membered face of the ligand and the metal fragment. Isodesmic equations calculated at the B3LYP/LANL2DZ level indicate that the extra stability of 1-M-2,4-C(2)B(4)H(7) varies from 14.44 kcal/mol (M = Al) to 15.30 kcal/mol (M = Tl). Similarly, M(2,4-C(2)B(4)H(6))(2)(1-) is more stable than M(2,4-C(2)B(9)H(11))(2)(1-) by 9.26 kcal/mol (M = Al) and by 6.75 kcal/mol (M = Tl). The preference for (MC(2)B(4)H(6))(2) over (MC(2)B(9)H(11))(2) at the same level is 30.54 kcal/mol (M = Al), 33.16 kcal/ mol (M = Ga) and 37.77 kcal/mol (M = In). The metal-metal bonding here is comparable to those in CpZn-ZnCp and H(2)M-MH(2) (M= Al, Ga, and In).  相似文献   

13.
Density functional theory calculations have shown that the open-shell metal-carbide endofullerene Sc3C2@C80 has the valence state (Sc3+)3(C2)(3-)@C80(6-). A lot of low-lying isomers differing in geometries and locations of the endohedral [(Sc3+)3(C2)(3-)] cluster have been located, indicating unusual dual intramolecular dynamic behaviors of this endofullerene at room temperature. The electrochemical redox properties of this endofullerene have been elucidated in terms of electronic structure theory. Its redox states are found to follow the general charge-state formula (Sc3+)3C2(3-q)-@C80(6-) (q is the charge of the whole molecule ranging from +1 to -3), demonstrating the high charge flexibility of the endohedral metal-carbide cluster. The structure of the endohedral [(Sc3+)3C2(3-q)-)] cluster varies with the redox processes, shifting from a planar structure (for q = 0 and -1) to a trifoliate structure (for q = +1, -2, -3).  相似文献   

14.
X-ray analyses of the cocrystals of a series of carbide cluster metallofullerenes Sc(2)C(2)@C(2n) (n = 40-42) with cobalt(II) octaethylporphyrin present new insights into the molecular structures and cluster-cage interactions of these less-explored species. Along with the unambiguous identification of the cage structures for the three isomers of Sc(2)C(2)@C(2v)(5)-C(80), Sc(2)C(2)@C(3v)(8)-C(82), and Sc(2)C(2)@D(2d)(23)-C(84), a clear correlation between the cluster strain and cage size is observed in this series: Sc-Sc distances and dihedral angles of the bent cluster increase along with cage expansion, indicating that the bending strain within the cluster makes it pursue a planar structure to the greatest degree possible. However, the C-C distances within Sc(2)C(2) remain unchanged when the cage expands, perhaps because of the unusual bent structure of the cluster, preventing contact between the cage and the C(2) unit. Moreover, analyses revealed that larger cages provide more space for the cluster to rotate. The preferential formation of cluster endohedral metallofullerenes for scandium might be associated with its small ionic radius and the strong coordination ability as well.  相似文献   

15.
Structures, enthalpy (Δ(f)H°(298)), entropy (S°(T)), and heat capacity (C(p)(T)) are determined for a series of nitrocarbonyls, nitroolefins, corresponding nitrites, and their carbon centered radicals using the density functional B3LYP and composite CBS-QB3 calculations. Enthalpies of formation (Δ(f)H°(298)) are determined at the B3LYP/6-31G(d,p), B3LYP/6-31+G(2d,2p), and composite CBS-QB3 levels using several work reactions for each species. Entropy (S) and heat capacity (C(p)(T)) values from vibration, translational, and external rotational contributions are calculated using the rigid-rotor-harmonic-oscillator approximation based on the vibration frequencies and structures obtained from the density functional studies. Contribution to Δ(f)H(T), S, and C(p)(T) from the analysis on the internal rotors is included. Recommended values for enthalpies of formation of the most stable conformers of nitroacetone cc(═o)cno2, acetonitrite cc(═o)ono, nitroacetate cc(═o)no2, and acetyl nitrite cc(═o)ono are -51.6 kcal mol(-1), -51.3 kcal mol(-1), -45.4 kcal mol(-1), and -58.2 kcal mol(-1), respectively. The calculated Δ(f)H°(298) for nitroethylene c═cno2 is 7.6 kcal mol(-1) and for vinyl nitrite c═cono is 7.2 kcal mol(-1). We also found an unusual phenomena: an intramolecular transfer reaction (isomerization) with a low barrier (3.6 kcal mol(-1)) in the acetyl nitrite. The NO of the nitrite (R-ONO) in CH(3)C(═O')ONO moves to the C═O' oxygen in a motion of a stretching frequency and then a shift to the carbonyl oxygen (marked as O' for illustration purposes).  相似文献   

16.
The new monocarbaborane dianion, arachno-4-CB(8)H(12)(2)(-) has been synthesized from the reaction of arachno-4-CB(8)H(14) with 2 equiv of NaH in polar solvents. DFT/GIAO computations at the B3LYP/6-311G//B3LYP/6-311G level, in conjunction with 1D and 2D NMR spectroscopic studies, have confirmed that the dianion results from deprotonation of both the endo-CH and one bridging hydrogen of the parent arachno-4-CB(8)H(14). While the DFT calculations indicate that a C(1) symmetric structure is lowest in energy, the experimental solution NMR data are consistent with the dianion having a C(s)() symmetric structure, thus suggesting that it is fluxional in solution. Transition state calculations located a low-energy pathway with an activation energy of only 2.7 kcal/mol that allows the migration of the bridging hydrogen between the two enantiomeric forms of the dianion. The process can occur by a single-step, simple rotation through a transition state structure containing a -BH(2) group at the B7 boron. Averaging the calculated (11)B NMR chemical shifts of the resonances for those atoms in the static enantiomeric structures that become equivalent by this fluxional process then gives excellent agreement with the solution NMR data. Transition state calculations of the fluxional behavior previously observed for the isoelectronic arachno-4-CB(8)H(13)(-) and arachno-4-SB(8)H(11)(-) monoanions have likewise revealed related low-energy (0.3 and 5.0 kcal/mol, respectively) rearrangement mechanisms involving the simultaneous rotation of three hydrogens (two bridging and one -BH(2)) through a C(s)() symmetry transition state containing three -BH(2) groups.  相似文献   

17.
Benchmark total atomization energies (TAE0 values) were obtained, by means of our recent W4 theory [Karton, A.; Rabinowitz, E.; Martin, J. M. L.; Ruscic, B. J. Chem. Phys. 2006, 125, 144108], for the molecules Be2, BeF2, BeCl2, BH, BF, BH3, BHF2, B2H6, BF3, AlF, AlF3, AlCl3, SiH4, Si2H6, and SiF4. We were then able to deduce "semi-experimental" heats of formation for the elements beryllium, boron, aluminum, and silicon by combining the calculated TAE0 values with experimental heats of formation obtained from reactions that do not involve the species Be(g), B(g), Al(g), and Si(g). The elemental heats of formation are fundamental thermochemical quantities that are required whenever a molecular heat of formation has to be derived from a calculated binding energy. Our recommended DeltaH degrees f,0 [A(g)] values are Be 76.4+/-0.6 kcal/mol, B 135.1+/-0.2 kcal/mol, Al 80.2+/-0.4 kcal/mol, and Si 107.2+/-0.2 kcal/mol. (The corresponding values at 298.15 K are 77.4, 136.3, 80.8, and 108.2 kcal/mol, respectively.) The Be value is identical to the CODATA recommendation (but with half of the uncertainty), while the B, Al, and Si values represent substantial revisions from established earlier reference data. The revised B and Si values are in agreement with earlier semi-ab initio derivations but carry much smaller uncertainties.  相似文献   

18.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

19.
Quantum-chemical calculations using DFT (BP86) and ab initio methods (MP2, SCS-MP2) have been carried out for the endohedral fullerenes Ng2@C60 (Ng=He-Xe). The nature of the interactions has been analyzed with charge- and energy-partitioning methods and with the topological analysis of the electron density (Atoms-in-Molecules (AIM)). The calculations predict that the equilibrium geometries of Ng2@C60 have D3d symmetry when Ng=Ne, Ar, Kr, while the energy-minimum structure of Xe2@C60 has D5d symmetry. The precession movement of He2 in He2@C60 has practically no barrier. The Ng--Ng distances in Ng2@C60 are much shorter than in free Ng2. All compounds Ng2@C60 are thermodynamically unstable towards loss of the noble gas atoms. The heavier species Ar2@C60, Kr2@C60, and Xe2@C60 are high energy compounds which are at the BSSE corrected SCS-MP2/TZVPP level in the range 96.7-305.5 kcal mol(-1) less stable than free C60+2 Ng. The AIM method reveals that there is always an Ng--Ng bond path in Ng2@C60. There are six Ng--C bond paths in (D3d) Ar2@C60, Kr2@C60, and Xe2@C60, whereas the lighter D3d homologues He2@C60 and Ne2@C60 have only three Ng--C2 paths. The calculated charge distribution and the orbital analysis clearly show that the bonding situation in Xe2@C60 significantly differs from those of the lighter homologues. The atomic partial charge of the [Xe2] moiety is +1.06, whereas the charges of the lighter dimers [Ng2] are close to zero. The a2u HOMO of (D3d) Xe2@C60 in the 1A1g state shows a large mixing of the highest lying occupied sigma* orbital of [Xe2] and the orbitals of the C60 cage. There is only a small gap between the a2u HOMO of Xe2@C60 and the eu LUMO and the a2u LUMO+1. The calculations show that there are several triplet states which are close in energy to each other and to the 1A1g state. The bonding analysis suggests that the interacting species in Xe2@C60 are the charged species Xe2q+ and C60q-, where 1相似文献   

20.
The rates of H/D exchange have been measured between (a) the activated olefins methyl methacrylate-d(5) and styrene-d(8), and (b) the Cr hydrides (eta(5)-C(5)Ph(5))Cr(CO)(3)H (2a), (eta(5)-C(5)Me(5))Cr(CO)(3)H (2b), and (eta(5)-C(5)H(5))Cr(CO)(3)H (2c). With a large excess of the deuterated olefin the first exchange goes to completion before subsequent exchanges begin, at a rate first order in olefin and in hydride. (Hydrogenation is insignificant except with styrene and CpCr(CO)(3)H; in most cases, the radicals arising from the first H. transfer are too hindered to abstract another H. .) Statistical corrections give the rate constants k(reinit) for H. transfer to the olefin from the hydride. With MMA, k(reinit) decreases substantially as the steric bulk of the hydride increases; with styrene, the steric bulk of the hydride has little effect. At longer times, the reaction of MMA or styrene with 2a gives the corresponding metalloradical 1a as termination depletes the concentration of the methyl isobutyryl radical 3 or the alpha-methylbenzyl radical 4; computer simulation of [1a] as f(t) gives an estimate of k(tr), the rate constant for H. transfer from 3 or 4 back to Cr. These rate constants imply a DeltaG (50 degrees C) of +11 kcal/mol for H. transfer from 2a to MMA, and a DeltaG (50 degrees C) of +10 kcal/mol for H. transfer from 2a to styrene. The CH(3)CN pK(a) of 2a, 11.7, implies a BDE for its Cr-H bond of 59.6 kcal/mol, and DFT calculations give 58.2 kcal/mol for the Cr-H bond in 2c. In combination the kinetic DeltaG values, the experimental BDE for 2a, and the calculated DeltaS values for H. transfer imply a C-H BDE of 45.6 kcal/mol for the methyl isobutyryl radical 3 (close to the DFT-calculated 49.5 kcal/mol), and a C-H BDE of 47.9 kcal/mol for the alpha-methylbenzyl radical 4 (close to the DFT-calculated 49.9 kcal/mol). A solvent cage model suggests 46.1 kcal/mol as the C-H BDE for the chain-carrying radical in MMA polymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号