首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhi-Bo Feng 《Physics letters. A》2008,372(21):3773-3777
This Letter proposes a theoretical scheme for scalable quantum computing with charge-phase qubits inside a common cavity. Individually addressing the applied gate pulses, we obtain the switchable interqubit couplings mediated by the cavity mode, from which a universal set of logic gates can be constructed. In our scheme the interqubit couplings are completely feasible to perform conditional gates, and the classical microwaves cause negligible leakage errors.  相似文献   

2.
Experiments with a few qubits, the basic elements of a quantum computer, using the methods of nuclear magnetic resonance (NMR) have demonstrated that quantum computing is possible. A useful quantum computer would need to use many qubits, while it appears that NMR with molecules is limited to about ten qubits. The easiest way to assemble a large number of qubits would be to use the existing solid state technology. However, the accuracy with which large numbers of solid state devices can be fabricated does not match the high-precision methods that have made quantum computing with magnetic resonance possible. Quantum computing with solid state devices must expect to encounter a new set of problems posed by differences between nominally identical devices. The difficulties are illustrated with examples of proposed qubits. Specific questions that must be addressed in attempts to use solid state devices for quantum computing are suggested. Received: 25 July 2002 / Accepted: 31 July 2002 / Published online: 4 December 2002 RID="*" ID="*"Corresponding author. Fax: +1-914/945-2141, E-mail: rkeyes@us.ibm.com  相似文献   

3.
We present a three-dimensional scalable linear ion trap scheme for ion trapping and discuss its applications for the optical frequency standard and scalable quantum information processing with its parallel strings of trapped 40Ca+ ions. The geometry here contains nine equal-distance parallel rods driven by rf, which form trapping potentials for radial confinement and two end ring electrodes biased at a few volts for axial confinement. Its feasibility is calculated by using the finite element analysis method.  相似文献   

4.
Taking into account the main noises in superconducting charge qubits (SCQs), we propose a feasible scheme to realize quantum computing (QC) in a specially-designed decoherence-free subspace (DFS). In our scheme two physical qubits are connected with a common inductance to form a strong coupling subsystem, which acts as a logical qubit. Benefiting from the well-designed DFS, our scheme is helpful to suppress certain decoherence effects.  相似文献   

5.
Based on the Josephson charge qubits coupled through microwaves, a scheme for implementation of the Deuutsch-Jozsa algorithm is proposed under the present scalable and feasible microfabrication technique. It would be a valuable step toward complex quantum computation.  相似文献   

6.
Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number of qubits can easily surpass that achievable with other techniques. Unlike other modalities proposed for quantum computing, this method enables one to adjust the dimension of the working state space, meaning the number of qubits can be readily varied. The universality of quantum computing in Floquet space with solid state NMR is discussed and a demonstrative experimental implementation of Grover's search is given. Received 19 April 2001  相似文献   

7.
Choi and Korepin [Quantum Information Processing 6(2007)243] presented a quantum partial search algorithm of a database with several target items which can find a target block quickly when each target block contains the same number of target items. Actually, the number of target items in each target block is arbitrary. Aiming at this case, we give a condition to guarantee performance of the partial search algorithm to be performed and the number of queries to oracle of the algorithm to be minimized. In addition, by further numerical computing we come to the conclusion that the more uniform the distribution of target items, the smaller the number of queries.  相似文献   

8.
Employing quantum registers, we first proposed a novel (2, 3) quantum threshold scheme based on Einstein- Podolsky Rosen (EPR) correlations in this letter. Motivated by the present threshold scheme, we also propose a controlled communication scheme to transmit the secret message with a controller. In the communication protocol, the encoded quantum message carried by particles sequence, is transmitted by legitimate communicators.  相似文献   

9.
We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a Y-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.  相似文献   

10.
A scalable protocol for multiparty quantum secret splitting with collective eavesdropping-check is proposed by using Einstein-Podolsky-Rosen pairs. We analyze the security of this protocol and prove that it can stand against some possible attacks in an ideal condition. Meanwhile, this protocol utilizes quantum dense coding to achieve a high intrinsic efficiency and source capacity. Moreover, only Bell-state measurement and local unitary operations are required, which makes this protocol more convenient from an applied point of view.  相似文献   

11.
We have performed 7Li and 19F nuclear magnetic resonance (NMR) in two lithium fluorides BaLiF3 and YLiF4 to explore the possibility of a crystal NMR quantum computing device. We find that (1) both the absolute values and the angular dependences of the line widths can primarily be accounted for by the nuclear dipolar fields, and (2) the spin–lattice relaxation times are long enough for quantum computations. These characteristics indicate that these crystals can be possible candidates for quantum computing devices. We also find that, in the perovskite structures like BaLiF3, magic angles are quite effective to diminish the nuclear dipole fields, which enables us to treat some nuclei as ‘isolated’. We propose using this feature to create low-dimensional nuclear-spin networks in the crystals. Received: 29 January 2001 / Accepted: 6 February 2001 / Published online: 3 April 2001  相似文献   

12.
Universal set of quantum gates are realized from quantum-dot spin qubits inside a cavity via two-channel Raman interactions. Individual addressing and effective switch of the cavity mediated interaction are directly possible here. This simple realization of all wanted interaction for selective qubits makes current scenario more suitable for scalable quantum computation.  相似文献   

13.
An updated version of our all-silicon quantum computing scheme [T.D. Ladd, J.R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. Lett. 89 (2002) 017901. [3]] and the experimental progress towards its realization are discussed. We emphasize the importance of revisiting a wide range of isotope effects which have been explored over the past several decades for the construction of solid-state silicon quantum computers. Using RF decoupling techniques [T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. B. 71 (2005) 014401] phase decoherence times T2=25 s of 29Si nuclear spins in single-crystal Si have been obtained at room temperature. We show that a linear chain of 29Si stable isotopes with nuclear spin I=1/2 embedded in a spin free 28Si stable isotope matrix can form an ideal building block for solid-state quantum information processors, especially, in the form of a quantum memory which requires a large number of operations within T2 for the continuous error correction.  相似文献   

14.
We report a scalable linear optical scheme for generating entangled states of multiple ququarts in which the individual single-ququart state is prepared with the biphoton polarization state of frequency-nondegenerate spontaneous parametric down-conversion. The output state is calculated with the full consideration of the higher order effect (double-pair events) of spontaneous parametric down-conversion. Scalability to multiple-ququart entanglement is demonstrated with examples: linear optical entanglement of three and four individual biphoton ququarts.  相似文献   

15.
We propose a new scheme for realizing a distant two-qubit controlled-U gate with nearest qubit-qubit interaction. The present scheme does not need measurement. Furthermore, it is noted that the two-qubit CNOT gates required by the scheme are greatly reduced when compared with the conventional method based on SWAP operations. The scheme is useful in quantum computing with solid-state systems where only interaction between nearest systems is available.  相似文献   

16.
Proposed silicon-based quantum-computer architectures have attracted attention because of their promise for scalability and their potential for synergetically utilizing the available resources associated with the existing Si technology infrastructure. Electronic and nuclear spins of shallow donors (e.g. phosphorus) in Si are ideal candidates for qubits in such proposals because of their long spin coherence times due to their limited interactions with their environments. For these spin qubits, shallow donor exchange gates are frequently invoked to perform two-qubit operations. We discuss in this review a particularly important spin decoherence channel, and bandstructure effects on the exchange gate control. Specifically, we review our work on donor electron spin spectral diffusion due to background nuclear spin flip-flops, and how isotopic purification of silicon can significantly enhance the electron spin dephasing time. We then review our calculation of donor electron exchange coupling in the presence of degenerate silicon conduction band valleys. We show that valley interference leads to orders of magnitude variations in electron exchange coupling when donor configurations are changed on an atomic scale. These studies illustrate the substantial potential that donor electron/nuclear spins in silicon have as candidates for qubits and simultaneously the considerable challenges they pose. In particular, our work on spin decoherence through spectral diffusion points to the possible importance of isotopic purification in the fabrication of scalable solid state quantum computer architectures. We also provide a critical comparison between the two main proposed spin-based solid state quantum computer architectures, namely, shallow donor bound states in Si and localized quantum dot states in GaAs.  相似文献   

17.
Quantum Key Distribution against Trojan Horse Attacks   总被引:1,自引:0,他引:1       下载免费PDF全文
蔡庆宇  吕桦 《中国物理快报》2007,24(5):1154-1157
Realistic experimental apparatus of quantum cryptography are imperfect, which may be utilized by a potential eavesdropper to eavesdrop on the communication. We show that quantum communication may be improved with quantum teleportation and entanglement swapping, which is robustly secure against the most general Trojan horse attacks. Our scheme is not an improvement of the communication apparatus, but the improvement of quantum communication protocol itself. We show that our modified schemes may be implemented with current technology.  相似文献   

18.
We study the electron states on lateral double quantum dots coupled in parallel. The charge stability diagrams are given in terms of the gate voltages of both dots. We discover that the two electron states translate from separated states to coupled states continuously by increasing the inter-dot coupling strength. Our results demonstrate that the parallel-quantum-dot tunability bodes well for future quantum computing applications.  相似文献   

19.
We theoretically present a scheme to realize the scalable geometric quantum computing with Cooper-pair box (CPB) qubits in circuit QED. A one-dimensional transmission line resonator in circuit QED acting as quantum data bus generates a common cavity mode and interacts with each CPB. It is found that the interqubit couplings between any pair of qubits are switchable by individually adjusting the gate pulses applied to the selected CPBs. In this proposed scheme, we can both controllably and selectively address logic gates in geometric scenarios, which opens the possibility to implement the scalable fault-tolerant quantum computing with Josephson qubits.  相似文献   

20.
We consider the model of quantum computer, which is represented as a Ising spin lattice, where qubits (spin-half systems) are separated by the isolators (two spin-half systems). In the idle mode or at the single bit operations the total spin of isolators is 0. There are no need of complicated protocols for correcting the phase and probability errors due to permanent interaction between the qubits. We present protocols for implementation of universal quantum gates with the rectangular radio-frequency pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号