首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
It is believed that natural biological membranes contain domains of lipid ordered phase enriched in cholesterol and sphingomyelin. Although the existence of these domains, called lipid rafts, is still not firmly established for natural membranes, direct microscopic observations and phase diagrams obtained from the study of three-component mixtures containing saturated phospholipids, unsaturated phospholipids, and cholesterol demonstrate the existence of lipid rafts in synthetic membranes. The presence of the domains or rafts in these membranes is often ascribed to the preferential interactions between cholesterol and saturated phospholipids, for example, between cholesterol and sphingomyelin. In this work, we calculate, using molecular dynamics computer simulation technique, the free energy of cholesterol transfer from the bilayer containing unsaturated phosphatidylcholine lipid molecules to the bilayer containing sphingomyelin molecules and find that the affinity of cholesterol to sphingomyelin is higher. Our calculations of the free-energy components, energy and entropy, show that cholesterol transfer is exothermic and promoted by the favorable change in the lipid-lipid interactions near cholesterol and not by the favorable energy of cholesterol-sphingomyelin interaction, as assumed previously.  相似文献   

2.
The effects of phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol on the activity of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis were studied in detail in phosphatidylinositol (PI)/detergent mixed micelles. By addition of PC, the enzymatic hydrolysis of PI was significantly stimulated in PI/Triton X-100 as well as PI/sodium deoxycholate (SDC) mixed micelles. SM stimulated enzyme activity toward PI/Triton X-100 micelles at a lower molar ratio of SM to PI, but was rather inhibitory at a ratio higher than 2.0. The enzyme activity became significantly lower with an increase of PE or cholesterol in PI/Triton X-100 micelles. Actually, both PE and cholesterol were intensively inhibitory when added at a higher molar ratio to PI in Triton X-100-containing micelles. In the system of PI/SDC mixed micelles, not only PC but also SM, PE and cholesterol enhanced the enzymatic hydrolysis of PI. The difference between PI/Triton X-100 and PI/SDC micelles regarding the effects of these lipids on PI-PLC action, must be dependent on the physical state of micelles formed by these detergents and lipids.  相似文献   

3.
Cell membranes provide a requisite dynamic interface to facilitate communication between the extracellular environment and the intracellular milieu. These membranes contain proteins that span and/or are loosely associated with the lipid bilayer. The organization of lipids and proteins components into membrane micro-domains provides a temporal and spatial signaling platform for communication. Recently, cholesterol and sphingomyelin enriched membrane micro-domains known as lipid rafts have been implicated in cell signaling events. In these studies we have advanced our hypothesis that stimulus dependent rearrangement of cholesterol into and out of membrane rafts provides a unique lipid–mediated regulatory mechanism. Using fluorescent derivatives of cholesterol, we have shown that membrane raft associated cholesterol was altered in response to collagen-induced platelet aggregatory stimulation. Collagen stimulation resulted in a rapid redistribution of cholesterol from the outer to the inner membrane monolayer. The reorganization of the outer membrane monolayer resulted in a concomitant increase in outer monolayer fluidity. These studies are the first to show that membrane cholesterol was released from the exchangeable membrane raft pool in response to physiological stimuli.  相似文献   

4.
The mechanical properties of liposome membranes are strongly dependent on type and ratio of lipid compounds, which can have important role in drug targeting and release processes when liposome is used as drug carrier. In this work we have used Brewster's angle microscopy to monitor the lateral compression process of lipid monolayers containing as helper lipids either distearoyl phosphatidylethanolamine (DSPE) or dioleoyl phophatidylethanolamine (DOPE) molecules on the Langmuir trough. The compressibility coefficient was determined for lipid blend monolayers containing the helper lipids above, cholesterol, distearoyl phosphatidylcholine (DSPC) and pegylated-DSPE at room temperature. Two variables, the cholesterol fraction and the ratio ρ between the helper lipid (either DSPE or DOPE) and the reference lipid DSPC, were studied by multivariate analysis to evaluate their impact on the compressibility coefficient of the monolayers. The cholesterol level was found to be the most significant variable for DSPE blends while the ratio ρ was the most significant one for DOPE blend monolayers. It was also found that these two variables can exhibit positive interaction and the same compressibility value can be obtained with different blend compositions.  相似文献   

5.
The application of supported lipid bilayer systems as molecular sensors, diagnostic devices, and medical implants is limited by their lack of stability. In an effort to enhance the stability of supported lipid bilayers, three pairs of phosphatidylcholine lipids were designed to cross-link at the termini of their 2-position acyl chain upon the formation of lipid bilayers. The cross-linked lipids span the lipid bilayer, resembling naturally occurring bolaamphiphiles that stabilize archaebacterial membranes against high temperatures. The three reactions investigated here include the acyl chain cross-linking between thiol and bromine groups, thiol and acryloyl groups, and cyclopentadiene and acryloyl groups. All three reactive lipid pairs were found to cross-link in liposomal membranes, as determined by thin-layer chromatography, ion-spray mass spectrometry, and 1H NMR. The monolayer film properties of the reactive amphiphiles were characterized by surface pressure-area isotherms and showed that stable monolayers formed at the air-water interface with limiting molecular areas comparable to that of pure saturated phosphatidylcholine lipids. Langmuir-Blodgett bilayers of dimyristoylphosphatidylcholine incorporating 15 mol % of the reactive thiol and acryloyl lipids had diffusion coefficients comparable with pure dimyristoylphosphatidylcholine, while bilayers with more than 25 mol % of the reactive lipids were immobile, suggesting that interleaflet cross-linking of the lipids inhibited membrane diffusion. Our results show that the reactive lipids can cross-link within a lipid bilayer and are suitable for assembling supported lipid bilayers using Langmuir-Blodgett deposition. By using terminally reactive amphiphiles to build up supported lipid bilayers with cross-linked leaflets, bolaamphiphiles can be incorporated into asymmetric solid supported membranes to increase their stability in biosensor and medical implant applications.  相似文献   

6.
Unequal affinity between lipids has been hypothesized to be a mechanism for the formation of microdomains/rafts in membranes. Our studies focus upon the interaction of cholesterol with polyunsaturated fatty acid (PUFA)-containing phospholipids. They support the proposal that steric incompatibility of the rigid steroid moiety for highly disordered PUFA chains, in particular docosahexaenoic acid (DHA), provides a sensitive trigger for lateral segregation of lipids into PUFA-rich/sterol-poor and PUFA-poor/sterol-rich regions. Solid state 2H NMR and x-ray diffraction (XRD) demonstrate that the solubility of cholesterol is reduced in 1-palmitoyl-2-docosahexaenoyl-phosphatidylethanolamine (16-0:22:6PE) bilayers. In mixed membranes of phosphatidylethanolamine (PE) with the lipid raft forming molecules egg sphingomyelin (SM) and cholesterol, diminished affinity of the sterol for 16:0-22:6PE relative to 1-palmitoyl-2-oleoylphosphatidylethanolamine (16:0-18:1PE) is identified by 2H NMR order parameters and detergent extraction. Phase separation of the PUFA-containing phospholipid from SM/cholesterol rafts is the implication, which may be associated with the myriad of health benefits of dietary DHA.  相似文献   

7.
A rapid method for the separation and quantitation of the major lipids of tissues and lipoproteins by automated high-performance thin-layer chromatography is presented. Solvent systems for one-dimensional separation of neutral lipids, of cholesteryl esters, and of phospholipids are described. Separated lipids are measured following treatment with methanolic sulphuric acid containing manganese chloride and scanned in fluorescence or absorption mode. Absolute quantitation is obtained by the use of an internal standard and by references to standards for each lipid run on the same plates as samples. The method described here is particularly suitable for the rapid quantitation of small amounts of lipid (0.01-0.02 nmol per sample), for example in tissue culture studies; 100 micrograms of fibroblast or macrophage protein are sufficient for complete lipid analysis. The coefficients of variation due to the sample preparation, application to the plates and densitometry are in the range 7.2-9.1%. The method was compared with enzymatic determinations for cholesterol and gave correlation coefficients of 0.95 for total cholesterol and 0.91 for unesterified cholesterol. Phospholipid estimation was compared with large-plate thin-layer chromatography and phosphorus analysis and gave correlation coefficients of 0.90 for phosphatidylcholine and 0.89 for sphingomyelin.  相似文献   

8.
Ultrafiltration experiments for the optical resolution of racemic phenylalanine were performed in a solution system containing bovine serum albumin (BSA) and surfactant agents (Triton X-100, Tween 20, sodium dodecyl sulfate), lipid (phosphaticylcholine) and fatty acid (palmitic acid sodium salt). It was found that -phenylalanine preferentially existed in the permeate at pH 7.0 due to the binding of BSA to -phenylalanine in the feed and that the separation factors (=concentration ratio of -isomer to -isomer in the permeate) increased with a decrease in the BSA solution containing no additives and in the BSA solution containing Triton X-100 or Tween 20. The unusual tendency that the separation factors were less than unity was observed and the separation factors decreased with a decrease in the feed concentration of phenylalanine during the ultrafiltration containing the palmitic acid sodium salt or the phosphatidylcholine. This is caused by the fact that the binding constants of -phenylalanine to BSA are higher than those of -phenylalanine in the BSA solution containing the palmitic acid sodium salt or phosphatidylcholine. Since there were found conformational changes of BSA in the presence of palmitic acid sodium salt based on circular dichroism measurements of BSA solution, the conformational changes of BSA were attributed to the higher affinity of -phenylalanine to BSA than that of -phenylalanine in the BSA solution containing the palmitic acid sodium salt or phosphatidylcholine.  相似文献   

9.
Studies on the interaction of cholesterol (CHOL) with palmitoyl-oleoyl phosphatidylcholine (POPC) and sphingomyelin (SPM) are considered to be important because of the occurrence of strong interactions between sphingolipids and CHOL, which lead to the formation of microdomains or rafts within biological membranes. In the present investigation, studies on the surface pressure (π)-area ( A ) measurements and fluorescence microscopic studies on monolayers of the above mentioned system have been reported. Ideality/nonideality of mixing, excess area, and free energy changes during the formation of the monolayers at different surface pressures for the mixed lipid systems were evaluated from the π A data. Interactions were found to be repulsive at lower CHOL content, which became associative at higher CHOL content. Condensing effects of CHOL on the mixed monolayers were found. Fluorescence studies on the systems revealed similar overall results.  相似文献   

10.
We apply a means to probe, stabilize, and control the size of lipid raft-like domains in vitro. In biomembranes the size of lipid rafts is ca. 10-30 nm. In vitro, mixing saturated and unsaturated lipids results in microdomains, which are unstable and coalesce. This inconsistency is puzzling. It has been hypothesized that biological line-active surfactants reduce the line tension between saturated and unsaturated lipids and stabilize small domains in vivo. Using solution X-ray scattering, we studied the structure of binary and ternary lipid mixtures in the presence of calcium ions. Three lipids were used: saturated, unsaturated, and a hybrid (1-saturated-2-unsaturated) lipid that is predominant in the phospholipids of cellular membranes. Only membranes composed of the saturated lipid can adsorb calcium ions, become charged, and therefore considerably swell. The selective calcium affinity was used to show that binary mixtures, containing the saturated lipid, phase separated into large-scale domains. Our data suggests that by introducing the hybrid lipid to a mixture of the saturated and unsaturated lipids, the size of the domains decreased with the concentration of the hybrid lipid, until the three lipids could completely mix. We attribute this behavior to the tendency of the hybrid lipid to act as a line-active cosurfactant that can easily reside at the interface between the saturated and the unsaturated lipids and reduce the line tension between them. These findings are consistent with a recent theory and provide insight into the self-organization of lipid rafts, their stabilization, and size regulation in biomembranes.  相似文献   

11.
We introduce an extended application of the off-lattice self-consistent-field theory (SCFT) to model lipid monolayers at air-water interfaces. The off-lattice SCFT is used without a priori symmetry assumptions on equilibrium morphologies. This enables us to capture asymmetric lipid membranes at air-water interfaces which are otherwise unattainable with a conventional SCF model. Equilibrium morphologies in systems containing lipid molecules, fractions of air, and water are studied as a function of the relative amount of lipid molecules. The corresponding Langmuir isotherms are analyzed to reveal possible phase transitions. We consider both saturated and unsaturated lipid molecules with a branched structure. For saturated lipids, we find two distinct morphological phases, i.e., micellar and lamellar, showing a pronounced first-order phase transition with a well-defined region of phase coexistence. This region is sensitive to the hydrophilicity of lipid molecules and the miscibility of air with water molecules. The phase coexistence is also influenced by the size of hydrophilic and hydrophobic parts of lipid molecules. In contrast, membranes of unsaturated lipids have developed a continuous range of smooth structural transformations from a circular to an ellipsoidal micellar morphology and eventually to a lamellar structure. The shape of the lamella changes from a slightly undulated to a vigorously curved. Unlike saturated lipid membranes, there is no apparent first-order phase transition or a region of phase coexistence for unsaturated lipid membranes. We interpret this as a result of a higher flexibility of unsaturated lipid membranes which enables them to adopt a wider range of conformations in comparison with saturated lipid membranes.  相似文献   

12.
Synthetic alkyl-lysophospholipids, represented by edelfosine (ED), reveal strong anticancer activity and therefore are promising drugs used in anticancer therapy. Primary target for edelfosine is cellular membrane, which is in contrast to traditional cytostatics affecting DNA. The mechanism of antitumor activity of edelfosine was hypothesized to be related to its accumulation in membrane rafts. Inspired by these findings, we have performed the Langmuir monolayer studies on the influence of edelfosine on systems composed of sphingomyelin (SM) and cholesterol (Chol), being the principal components of membrane rafts. Sphingomyelin-cholesterol proportion in monolayers was varied to reflect the composition of solely membrane rafts (SM/Chol=2:1) and contain excess of cholesterol (SM/Chol=1:1 and 1:2). Into these systems, edelfosine was added in various concentrations. The analysis of surface pressure-area isotherms, complemented with films visualization with Brewster angle microscopy (BAM) allowed us to compare the effect of edelfosine on condensation and ordering of SM/Chol monolayers. The results evidenced that the influence of ED on the interactions in model membranes and its fluidizing effect is highly cholesterol-dependent. The strongest decrease of monolayer ordering was observed for model raft system, while the excess of cholesterol present in the remaining mixtures was found to weaken the fluidizing effect of the drug.  相似文献   

13.
Organometallic compounds are widely spread in the human environment sometimes, causing a substantial health risk. Their amphiphilic character enables them to intercalate and penetrate cell membranes, potentially affecting various vital cell functions. Compound adsorption onto the membrane depends on the compound properties, as well as on the membrane composition and state. When adsorbing onto the lipidic surface, phenyltins localize at areas where lipid bilayer organization is compatible with compound spatial requirements. The lipid bilayer is a dynamic and laterally nonuniform structure with complex local and global architecture correlated with a variety of cell functions. The selective binding of a toxic compound to selected membrane areas may, therefore, interfere with some types of cellular process. We present experimental results concerning phenyltin adsorption onto the lipid bilayer surface measured with the fluorescent probe fluorescein‐PE. Model lipid bilayers were formed from lipid mixtures mimicking various plasma membrane regions. The adsorption of Ph3SnCl and P2SnCl2 onto the phosphatidylcholine–cholesterol bilayer was qualitatively different from sphingomyelin–cholesterol. The results presented indicate that phenyltins are likely to accumulate in areas containing phosphatidylcholine, outside of lipid rafts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
Label-free imaging mass spectrometry is utilized the first time to study lipid-lipid interactions in a model membrane system. Ternary lipid mixtures of cholesterol (CH), sphingomyelin (SM), and phosphatidylcholine (PC) on supported Langmuir-Blodgett films are investigated as a mimic of the cellular membrane. The unique chemical specificity and imaging capability allow identification and localization of each lipid molecule in the membranes. The SM and PC in each ternary mixture vary in their acyl chain saturation with both, either, or neither one double bonded at the same position of their acyl chain. For the ternary mixtures with SM and PC both saturated or unsaturated, all the lipids are evenly distributed in the molecule-specific images. However, domain structures were observed for the two mixtures with either SM or PC unsaturated. In both films, the saturated lipid, whether it is SM or PC, colocalized with CH while the unsaturated lipid was excluded from the CH domains. These results strongly suggest that acyl chain saturation, rather than the specific interactions between SM and CH, is the dominating factor for SM colocalization with CH in the raft areas of the cellular membranes.  相似文献   

15.
Brain tissue is characterized by high lipid content. Its content decreases and the lipid composition changes during transformation from normal brain tissue to tumors. Therefore, the analysis of brain lipids might complement the existing diagnostic tools to determine the tumor type and tumor grade. Objective of this work is to extract lipids from gray matter and white matter of porcine brain tissue, record infrared (IR) spectra of these extracts and develop a quantification model for the main lipids based on partial least squares (PLS) regression. IR spectra of the pure lipids cholesterol, cholesterol ester, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, galactocerebroside and sulfatide were used as references. Two lipid mixtures were prepared for training and validation of the quantification model. The composition of lipid extracts that were predicted by the PLS regression of IR spectra was compared with lipid quantification by thin layer chromatography.  相似文献   

16.
The nature of the cholesterol/glycolipid interaction in rafts being poorly understood, the interaction of cholesterol with the GM3 ganglioside has been studied by surface pressure measurements and fluorescence microscopy. Results have been compared to those obtained with sphingomyelin (SM)-cholesterol and palmitoyl-oleoyl-phosphatidylcholine (POPC)–cholesterol monolayers. The analysis of (πA) isotherms of mixed monolayers show a condensing effect of cholesterol on GM3 molecules, in the same range than the effect observed with POPC and higher than the effect on SM. This is likely due to the similar state of GM3 and POPC, since both molecules are in liquid expanded phases in our experimental conditions. The study of the cholesterol desorption induced by β-cyclodextrin suggests also that the GM3–cholesterol interaction is rather weak as in the case of POPC–cholesterol interaction, and clearly lower than SM–cholesterol one. This lack of interaction is discussed in terms of nature of lipid chains and molecular shape, and suggests that no hydrogen bond is formed between GM3 and cholesterol polar heads. Fluorescence microscopy performed on mixed GM3–cholesterol monolayers shows the presence, at surface pressure higher than 10 mN/m, of particular blurring patterns without defined boundary, which could be due to a partial solubilization in one phase of different phases observed at lower surface pressure, whereas SM–cholesterol and POPC–cholesterol monolayers are homogeneous at the lateral resolution of our microscopy set-up.  相似文献   

17.
A combination of vibrational sum frequency generation spectroscopy and atomic force microscopy is used to study the changes in morphology and conformational order in monolayers prepared from three natural sphingomyelin (SM) mixtures as a function of surface pressure and cholesterol concentration. The most homogeneous SM gave monolayers with well-ordered acyl chains and few gauche defects with relatively small effects of either increasing surface pressure or cholesterol addition. Heterogeneous SM mixtures with a mixture of acyl chain lengths or with significant fractions of unsaturated acyl chains had much larger contributions from gauche defects at low surface pressure and gave increasingly well-ordered monolayers as the surface pressure increased. They also showed substantial increases in lipid chain order after cholesterol addition. Overall, these results are consistent with the strong hydrogen bonding capacity of SM leading to well-ordered monolayers over a range of surface pressures. The changes in acyl chain order for natural SMs as a function of cholesterol are relevant to formation of sphingolipid-cholesterol enriched domains in cell membranes.  相似文献   

18.
The miscibility of phosphatidylserine, phosphatidylcholine, and cholesterol in monolayers were studied. The influence of sodium and calcium ions in this system was determined. The compression isotherms of mixed monolayers of the above cited three components spread on subphases containing opiate molecules are elucidated. Moreover, the penetration kinetics of opiate molecules in these mixed monolayers was also recorded. The results show that the presence of cholesterol always lowers the penetration of opioid molecules; this effect is weaken for meperidine, the most hydrophobic of the molecules assayed.Abreviations PS phosphatidylserine - PC phosphatidylcholine - PI phosphatidylinositol - Chol cholesterol  相似文献   

19.
The interactions between lipids (cholesterol, distearoylphosphatidylcholine, distearoylphosphatidylethanolamine and sphingomyelin) and the γ-globulin protein have been analyzed using the monolayer technique at the air–liquid interface. The analysis has been carried out using both state equations and an adequate thermodynamic formulation for the surface pressure (π)–molecular area (a) isotherms. Different parameters as the virial coefficients, have been estimated. For the uncharged lipid monolayers, the interactions between the molecules are of an attractive nature, at medium and long distance, and of a steric repulsive nature at short distance. At low surface pressures the lipid molecules form small domains. The net force between γ-Globulin molecules in the monolayers has been found to be attractive. Finally, it can be concluded that when the lipid monolayers are uncharged, there is practically no interaction between the protein and lipid molecules at the mentioned interface.  相似文献   

20.
In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号