首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the problems in scheduling a set of jobs associated with random due dates on a single machine so as to minimize the expected maximum lateness in stochastic environment. This is a difficult problem and few efforts have been reported on its solution in the literature. In this paper, we first derive a deterministic equivalent to the expected maximum lateness and then propose a dynamic programming algorithm to obtain the optimal solutions. The procedures to compute optimal solutions are initially developed in the case of deterministic processing times, and then extended to stochastic processing times following arbitrary probability distributions. Moreover, several heuristic rules are suggested to compute near-optimal solutions, which are shown to be highly efficient and accurate by computer-based experiments.  相似文献   

2.
Finding optimal decisions often involves the consideration of certain random or unknown parameters. A standard approach is to replace the random parameters by the expectations and to solve a deterministic mathematical program. A second approach is to consider possible future scenarios and the decision that would be best under each of these scenarios. The question then becomes how to choose among these alternatives. Both approaches may produce solutions that are far from optimal in the stochastic programming model that explicitly includes the random parameters. In this paper, we illustrate this advantage of a stochastic program model through two examples that are representative of the range of problems considered in stochastic programming. The paper focuses on the relative value of the stochastic program solution over a deterministic problem solution.The author's work was supported in part by the National Science Foundation under Grant DDM-9215921.  相似文献   

3.
In a previous paper we gave a new formulation and derived the Euler equations and other necessary conditions to solve strong, pathwise, stochastic variational problems with trajectories driven by Brownian motion. Thus, unlike current methods which minimize the control over deterministic functionals (the expected value), we find the control which gives the critical point solution of random functionals of a Brownian path and then, if we choose, find the expected value.This increase in information is balanced by the fact that our methods are anticipative while current methods are not. However, our methods are more directly connected to the theory and meaningful examples of deterministic variational theory and provide better means of solution for free and constrained problems. In addition, examples indicate that there are methods to obtain nonanticipative solutions from our equations although the anticipative optimal cost function has smaller expected value.In this paper we give new, efficient numerical methods to find the solution of these problems in the quadratic case. Of interest is that our numerical solution has a maximal, a priori, pointwise error of O(h3/2) where h is the node size. We believe our results are unique for any theory of stochastic control and that our methods of proof involve new and sophisticated ideas for strong solutions which extend previous deterministic results by the first author where the error was O(h2).We note that, although our solutions are given in terms of stochastic differential equations, we are not using the now standard numerical methods for stochastic differential equations. Instead we find an approximation to the critical point solution of the variational problem using relations derived from setting to zero the directional derivative of the cost functional in the direction of simple test functions.Our results are even more significant than they first appear because we can reformulate stochastic control problems or constrained calculus of variations problems in the unconstrained, stochastic calculus of variations formulation of this paper. This will allow us to find efficient and accurate numerical solutions for general constrained, stochastic optimization problems. This is not yet being done, even in the deterministic case, except by the first author.  相似文献   

4.
This paper considers several probability maximization models for multi-scenario portfolio selection problems in the case that future returns in possible scenarios are multi-dimensional random variables. In order to consider occurrence probabilities and decision makers’ predictions with respect to all scenarios, a portfolio selection problem setting a weight with flexibility to each scenario is proposed. Furthermore, by introducing aspiration levels to occurrence probabilities or future target profit and maximizing the minimum aspiration level, a robust portfolio selection problem is considered. Since these problems are formulated as stochastic programming problems due to the inclusion of random variables, they are transformed into deterministic equivalent problems introducing chance constraints based on the stochastic programming approach. Then, using a relation between the variance and absolute deviation of random variables, our proposed models are transformed into linear programming problems and efficient solution methods are developed to obtain the global optimal solution. Furthermore, a numerical example of a portfolio selection problem is provided to compare our proposed models with the basic model.  相似文献   

5.
Stochastic uncapacitated hub location   总被引:1,自引:0,他引:1  
We study stochastic uncapacitated hub location problems in which uncertainty is associated to demands and transportation costs. We show that the stochastic problems with uncertain demands or dependent transportation costs are equivalent to their associated deterministic expected value problem (EVP), in which random variables are replaced by their expectations. In the case of uncertain independent transportation costs, the corresponding stochastic problem is not equivalent to its EVP and specific solution methods need to be developed. We describe a Monte-Carlo simulation-based algorithm that integrates a sample average approximation scheme with a Benders decomposition algorithm to solve problems having stochastic independent transportation costs. Numerical results on a set of instances with up to 50 nodes are reported.  相似文献   

6.
We propose a general-purpose algorithm APS (Adaptive Pareto-Sampling) for determining the set of Pareto-optimal solutions of bicriteria combinatorial optimization (CO) problems under uncertainty, where the objective functions are expectations of random variables depending on a decision from a finite feasible set. APS is iterative and population-based and combines random sampling with the solution of corresponding deterministic bicriteria CO problem instances. Special attention is given to the case where the corresponding deterministic bicriteria CO problem can be formulated as a bicriteria integer linear program (ILP). In this case, well-known solution techniques such as the algorithm by Chalmet et al. can be applied for solving the deterministic subproblem. If the execution of APS is terminated after a given number of iterations, only an approximate solution is obtained in general, such that APS must be considered a metaheuristic. Nevertheless, a strict mathematical result is shown that ensures, under rather mild conditions, convergence of the current solution set to the set of Pareto-optimal solutions. A modification replacing or supporting the bicriteria ILP solver by some metaheuristic for multicriteria CO problems is discussed. As an illustration, we outline the application of the method to stochastic bicriteria knapsack problems by specializing the general framework to this particular case and by providing computational examples.  相似文献   

7.
This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to find upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right-hand sides. The upper bounds are obtained by solving deterministic mathematical programming problems with dimensions that do not depend on the sample space size. The algorithm for the two-stage problem involves the solution of a deterministic linear program and a simple semidefinite program. The algorithm for the multi-stage problem invovles the solution of a quadratically constrained convex programming problem.  相似文献   

8.
Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the value function. By choosing the Lagrange multiplier equal to its nonanticipative constraint value the usual stochastic (nonanticipative) optimal control and optimal cost are recovered. This suggests a method for solving the anticipative control problems by almost sure deterministic optimal control. We obtain a PDE for the “cost of perfect information” the difference between the cost function of the nonanticipative control problem and the cost of the anticipative problem which satisfies a nonlinear backward HJB SPDE. Poisson bracket conditions are found ensuring this has a global solution. The cost of perfect information is shown to be zero when a Lagrangian submanifold is invariant for the stochastic characteristics. The LQG problem and a nonlinear anticipative control problem are considered as examples in this framework  相似文献   

9.
The treasurer of a bank is responsible for the cash management of several banking activities. In this work, we focus on two of them: cash management in automatic teller machines (ATMs), and in the compensation of credit card transactions. In both cases a decision must be taken according to a future customers demand, which is uncertain. From historical data we can obtain a discrete probability distribution of this demand, which allows the application of stochastic programming techniques. We present stochastic programming models for each problem. Two short-term and one mid-term models are presented for ATMs. The short-term model with fixed costs results in an integer problem which is solved by a fast (i.e. linear running time) algorithm. The short-term model with fixed and staircase costs is solved through its MILP equivalent deterministic formulation. The mid-term model with fixed and staircase costs gives rise to a multi-stage stochastic problem, which is also solved by its MILP deterministic equivalent. The model for compensation of credit card transactions results in a closed form solution. The optimal solutions of those models are the best decisions to be taken by the bank, and provide the basis for a decision support system.  相似文献   

10.
This paper considers Stackelberg solutions for two-level linear programming problems under fuzzy random environments. To deal with the formulated fuzzy random two-level linear programming problem, an α-stochastic two-level linear programming problem is defined through the introduction of α-level sets of fuzzy random variables. Taking into account vagueness of judgments of decision makers, fuzzy goals are introduced and the α-stochastic two-level linear programming problem is transformed into the problem to maximize the satisfaction degree for each fuzzy goal. Through fractile criterion optimization in stochastic programming, the transformed stochastic two-level programming problem can be reduced to a deterministic two-level programming problem. An extended concept of Stackelberg solution is introduced and a numerical example is provided to illustrate the proposed method.  相似文献   

11.
In this paper we apply stochastic programming modelling and solution techniques to planning problems for a consortium of oil companies. A multiperiod supply, transformation and distribution scheduling problem—the Depot and Refinery Optimization Problem (DROP)—is formulated for strategic or tactical level planning of the consortium's activities. This deterministic model is used as a basis for implementing a stochastic programming formulation with uncertainty in the product demands and spot supply costs (DROPS), whose solution process utilizes the deterministic equivalent linear programming problem. We employ our STOCHGEN general purpose stochastic problem generator to ‘recreate’ the decision (scenario) tree for the unfolding future as this deterministic equivalent. To project random demands for oil products at different spatial locations into the future and to generate random fluctuations in their future prices/costs a stochastic input data simulator is developed and calibrated to historical industry data. The models are written in the modelling language XPRESS-MP and solved by the XPRESS suite of linear programming solvers. From the viewpoint of implementation of large-scale stochastic programming models this study involves decisions in both space and time and careful revision of the original deterministic formulation. The first part of the paper treats the specification, generation and solution of the deterministic DROP model. The stochastic version of the model (DROPS) and its implementation are studied in detail in the second part and a number of related research questions and implications discussed.  相似文献   

12.
This paper considers Stackelberg solutions for decision making problems in hierarchical organizations under fuzzy random environments. Taking into account vagueness of judgments of decision makers, fuzzy goals are introduced into the formulated fuzzy random two-level linear programming problems. On the basis of the possibility and necessity measures that each objective function fulfills the corresponding fuzzy goal, together with the introduction of probability maximization criterion in stochastic programming, we propose new two-level fuzzy random decision making models which maximize the probabilities that the degrees of possibility and necessity are greater than or equal to certain values. Through the proposed models, it is shown that the original two-level linear programming problems with fuzzy random variables can be transformed into deterministic two-level linear fractional programming problems. For the transformed problems, extended concepts of Stackelberg solutions are defined and computational methods are also presented. A numerical example is provided to illustrate the proposed methods.  相似文献   

13.
We survey in this paper various solution approaches for multiobjective stochastic problems where random variables can be in both objectives and constraints parameters. Once a problem requires a stochastic formulation, a first step consists in transforming the problem into its deterministic formulation. We propose to classify and evaluate such transformations with regards to the many proposed concepts of efficiency. The paper addresses also some applications of the multiobjective stochastic programming models.  相似文献   

14.
In this paper, we analyzed stochastic chaos and Hopf bifurcation of stochastic Bonhoeffer–van der Pol (SBVP for short) system with bounded random parameter of an arch-like probability density function. The modifier ‘stochastic’ here implies dependent on some random parameter. In order to study the dynamical behavior of the SBVP system, Chebyshev polynomial approximation is applied to transform the SBVP system into its equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. Thus, we can further explore the nonlinear phenomena in SBVP system. Stochastic chaos and Hopf bifurcation analyzed here are by and large similar to those in the deterministic mean-parameter Bonhoeffer–van der Pol system (DM–BVP for short) but there are also some featuring differences between them shown by numerical results. For example, in the SBVP system the parameter interval matching chaotic responses diffuses into a wider one, which further grows wider with increasing of intensity of the random variable. The shapes of limit cycles in the SBVP system are some different from that in the DM–BVP system, and the sizes of limit cycles become smaller with the increasing of intensity of the random variable. And some biological explanations are given.  相似文献   

15.
《随机分析与应用》2013,31(2):403-427
Abstract

In this paper, we set up the comparison theorem between the mild solution of semilinear time-delay stochastic evolution equation with general time-delay variable and the solution of a class (1-dimension) deterministic functional differential equation, by using the Razumikhin–Lyapunov type functional and the theory of functional differential inequalities. By applying this comparison theorem, we give various types of the stability comparison criteria for the semilinear time-delay stochastic evolution equations. With the aid of these comparison criteria, one can reduce the stability analysis of semilinear time-delay stochastic evolution equations in Hilbert space to that of a class (1-dimension) deterministic functional differential equations. Furthermore, these comparison criteria in special case have been applied to derive sufficient conditions for various stability of the mild solution of semilinear time-delay stochastic evolution equations. Finally, the theories are illustrated with some examples.  相似文献   

16.
随机线性不等式组的确定性等价式   总被引:3,自引:0,他引:3  
在大量的决策问题中,经常会出现含有随机变量的不等式或不等式组。把这类含有随机变理的模型转化成确定性的模型是解决问题的重要途径。它们在随机控制和不完全信息群体决策随机决策问题中起着重要的作用。因此,如何将随机不等林或随机不等式组转化为相应的确定性等价式的问题受到人们的关注。本文对含有确定分布的随机变量的线性不等式组,就其相应的概率表达式作出分类,并根据其左端系数矩阵和右端向量含有随机因素的情形分别进行讨论,系统地导出了它们相应的确定性等价式。  相似文献   

17.
Goal programming provides an efficient technique to deal with decision making problems with multiple conflicting objectives. This paper joins the streams of research on goal programming by providing a so-called uncertain random goal programming to model the multi-objective optimization problem involving uncertain random variables. Several equivalent deterministic forms are derived on the condition that the set of parameters consists of uncertain variables and random variables. Finally, an example is given to illustrate the application of the approach.  相似文献   

18.
In this paper, we identify a new class of stochastic linearconvex optimal control problems, whose solution can be obtained by solving appropriate equivalent deterministic optimal control problems. The term linear-convex is meant to imply that the dynamics is linear and the cost function is convex in the state variables, linear in the control variables, and separable. Moreover, some of the coefficients in the dynamics are allowed to be random and the expectations of the control variables are allowed to be constrained. For any stochastic linear-convex problem, the equivalent deterministic problem is obtained. Furthermore, it is shown that the optimal feedback policy of the stochastic problem is affine in its current state, where the affine transformation depends explicitly on the optimal solution of the equivalent deterministic problem in a simple way. The result is illustrated by its application to a simple stochastic inventory control problem.This research was supported in part by NSERC Grant A4617, by SSHRC Grant 410-83-0888, and by an INRIA Post-Doctoral Fellowship.  相似文献   

19.
We consider a P model version of stochastic spanning tree problems with random edge costs. Parameters of underling probability distribution of edge costs are unknown and so they are estimated by a confidence region from statistical data. The problem is first transformed into a deterministic equivalent problem with a minimax type objective function and a confidence region of means and variances, since we assume normal distributions with respect to random edge costs. Our model reflects the situation that the maximum possible damage due to an unknown parameter should be minimized. We show the problem can be reduced to the deterministic equivalent problem of another stochastic spanning tree problem, which is already investigated by us. Thus, we can find an optimal spanning tree of the original problem very efficiently by this reduction.  相似文献   

20.
We deal with operational fixed interval scheduling problem with random delays in job processing times. We formulate two stochastic programming problems. In the first problem with a probabilistic objective, all jobs are processed on available machines and the goal is to obtain a schedule with the highest attainable reliability. The second problem is to select a subset of jobs with the highest reward under a chance constraint ensuring feasibility of the schedule with a prescribed probability. We assume that the multivariate distribution of delays follows an Archimedean copula, whereas there are no restrictions on marginal distributions. We introduce new deterministic integer linear reformulations based on flow problems. We compare the formulations with the extended robust coloring problem, which was shown to be a deterministic equivalent to the stochastic programming problem with probabilistic objective by Branda et al. (Comput Ind Eng 93:45–54, 2016). In the numerical study, we report average computational times necessary to solve a large number of simulated instances. It turns out that the new flow-based formulation helps to solve the FIS problems considerably faster than the other one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号