首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The growth of submonolayer Pt on Ru(0 0 0 1) has been studied with scanning tunneling microscopy. We focus on the island evolution depending on Pt coverage θPt, growth temperature TG and post-growth annealing temperature TA. Dendritic trigonal Pt islands with atomically rough borders are observed at room temperature and moderate deposition rates of about 5 × 10−4 ML/s. Two types of orientation, rotated by 180° and strongly influenced by minute amounts of oxygen are observed which is ascribed to nucleation starting at either hcp or fcc hollow sites. The preference for fcc sites changes to hcp in the presence of about one percent of oxygen. At lower growth temperatures Pt islands show a more fractal shape. Generally, atomically rough island borders smooth down at elevated growth temperatures higher than 300 K, or equivalent annealing temperatures. Dendritic Pt islands, for example, transform into compact, almost hexagonal islands, indicating similar step energies of A- and B-type of steps. Depending on the Pt coverage the thermal evolution differs somewhat: While regular islands on Ru(0 0 0 1) are formed at low coverages, vacancy islands are observed close to completion of the Pt layer.  相似文献   

2.
Extensive research activity has been devoted to self-assembly of very small coherent islands. However, while island formation is commonly described by a widely used S-K growth scheme, more complex mechanisms based on competitive effects of kinetics and thermodynamics take place during the epitaxy of Si1−xGex on Si(0 0 1). The aim of this paper is to explain the formation and the evolution of Si1−xGex islands on Si(0 0 1). The paper presents a comprehensive investigation of the different growth modes of Si1−xGex films (with x varying from 0 to 1) on Si(0 0 1) and Si(1 1 1). The results are presented in the form of kinetic morphological growth diagrams of as-grown samples. Two and four growth regimes are distinguished on (1 1 1) and (0 0 1) respectively. These growth regimes correspond to different levels of relaxation. In particular the four regimes observed on Si(0 0 1) correspond to (i) no relaxation in regime I (2D layer), (ii) 15-20% relaxation in regime II (“huts” islands with (1 0 5) facets), (iii) 20% and 50% relaxation in regime III (in “huts” and “domes” respectively) and (iv) 50% and 80% relaxation in regime IV (“domes” with bimodal size distribution). Every growth regime characteristic of as-grown sample is also associated with a specific equilibrium steady state morphology which is obtained after long-term annealing of the as-grown samples. In the two first regimes (no or small strain relaxation) the equilibrium morphology of highly strained Si1−xGex deposits corresponds to (1 0 5) faceted islands. We show that these islands are stabilised by the compressive stress. As soon as strain is released, (1 0 5) facets disappear at the expense of the (1 1 3) and (1 1 1) facets and first-order transition occurs between “huts” and “domes” islands.  相似文献   

3.
TiO2 and Pt doped TiO2 thin films were grown by pulsed laser deposition on 〈0 0 1〉 SiO2 substrates. The doped films were compared with undoped ones deposited in similar experimental conditions. An UV KrF* (λ = 248 nm, τFWHM ≅ 20 ns, ν = 2 Hz) excimer laser was used for the irradiation of the TiO2 or Pt doped TiO2 targets. The substrate temperatures were fixed during the growth of the thin films at values within the 300-500 °C range. The films’ surface morphology was investigated by atomic force microscopy and their crystalline quality by X-ray diffractometry. The corresponding transmission spectra were recorded with the aid of a double beam spectrophotometer in the spectral range of 400-1100 nm. No contaminants or Pt segregation were detected in the synthesized anatase phase TiO2 thin films composition. Titania crystallites growth inhibition was observed with the increase of the dopant concentration. The average optical transmittance in the visible-infrared spectral range of the films is higher than 85%, which makes them suitable for sensor applications.  相似文献   

4.
We have studied the scaling behavior of two-dimensional island density during submonolayer growth of CaF2 on vicinal Si(1 1 1) surfaces using scanning tunneling microscopy. We have analyzed the morphology of the Si(1 1 1) surfaces where CaF2 partial monolayers with coverages of about 0.1 monolayer are deposited at ∼600 °C. The number density of terrace nucleated islands increases with substrate terrace width l as ∼l4 in a low island density regime. This scaling behavior is consistent with predictions for the case of the irreversible growth of islands.  相似文献   

5.
The Tb0.29(Dy1−xPrx)0.71Fe1.97 (x=0, 0.1, 0.2 and 0.3) alloys were prepared by directional solidification method. The orientation, magnetostriction λ, Curie temperature Tc and microstructure of alloys were characterized by XRD, standard resistant strain gauge technique, VSM and SEM-EDS. The results reveal that the alloys have a preferred orientation of 〈1 1 0〉 and 〈1 1 3〉 direction when x>0. With the increase in Pr content, the Tc of alloys decreases gradually and the non-cubic phase appears, resulting in the decline of λ dramatically, from 1935.2×10−6 for x=0 to 695.9×10−6 for x=0.3 at a compressive stress of 6 MPa and a magnetic field of H=240 kA m−1.  相似文献   

6.
Thin film growth of 6,13-pentacenequinone (C24H12O2, PnQ) on Si(1 1 1)-7 × 7 at room temperature (RT) was studied by low-energy electron microscopy (LEEM) and ab initio density functional theory (DFT) calculations. Our experiments yielded direct microscopic observation of enantiomorphic evolution mechanism in the initial stage of the chiral-like growth of PnQ islands, under kinetic growth conditions. We observed that the faster growth direction aligns with the direction of easier molecule incorporation, or lowest kink formation energy, rather than along the lowest energy step. Real time observation of the growth and subsequent relaxation of island shape revealed that kinetically stiff direction differs from the thermodynamic one. This feature together with anisotropic mass incorporation determines the enantiomorphic evolution and rotational arrangement of crystallites during the growth of elongated organic molecules, like PnQ.  相似文献   

7.
The TbxHo0.75−xPr0.25(Fe0.9B0.1)2 (x=0, 0.1, 0.15, 0.2, 0.25, and 0.3) compounds are found to stabilize in a cubic Laves phase structure. The lattice parameter, magnetostriction (at 10 kOe), and Curie temperature are found to increase with increasing Tb content. The compound with x=0.15 exhibits a possible anisotropy compensation between the Tb and (Ho/Pr) sublattices. The easy magnetization direction rotates towards the 〈1 1 1〉 from the 〈1 0 0〉 direction, with increasing Tb content. The splitting of the (4 4 0) peak accompanied by the spontaneous magnetostriction-induced rhombohedral distortion is observed for compounds with x?0.15 and the spontaneous magnetostriction (λ1 1 1) is found to increase with Tb content.  相似文献   

8.
Polycrystalline Fe100−xGax (19?x?23) films were grown on Si(1 0 0) substrates at different partial pressures of sputtering gas ranging from 3 to 7 μbar. Microstructural, magnetic and magnetostrictive properties were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and magneto-optic Kerr effect (MOKE) magnetometry respectively. X-ray diffraction showed that all films have the body-centered cubic (bcc) Fe-Ga phase with the 〈1 1 0〉 direction out of the film plane. Magnetic characterization of the films showed that the films prepared at 3 μbar had weak uniaxial anisotropy whereas films grown at Ar pressures in the range 4-7 μbar were magnetically isotropic. The effective saturation magnetostriction constants (λeff) of the films were measured using the Villari effect. It was found that effective saturation magnetostriction constants were almost constant over the Ga composition range achieved by varying the sputtering pressure. The measured effective magnetostriction constants fit closely to the calculated saturation magnetostriction constants of 〈1 1 0〉 textured polycrystalline films with the 〈1 1 0〉 directions slightly canted with respect to the normal to the sample surface. It was found that a high pressure of the sputtering gas effected the magnetic softness of the films. The saturation field increased and remanence ratio decreased with increase in pressure.  相似文献   

9.
The growth of thin Fe films deposited at oblique incidence on an iron silicide template onto Si(1 1 1) single crystal has been investigated as a function of Fe thickness (0 < tFe ? 180 monolayers (MLs)) and incidence angle (0 ? θ ? 80°). The growth mode is determined in situ by means of scanning tunnelling microscopy (STM) and low energy electron diffraction (LEED). Stripes oriented perpendicularly to the incident atomic flux are formed for θ ? 30°. Self-correlation functions are used to extract characteristic lengths from STM images. The correlation lengths in the direction of the incident flux (ξx) and perpendicular to the atomic flux (ξy) grow with different powers versus time (ξxtσ and ξytρ, with σ = 0.34 ± 0.03 and ρ = 0.67 ± 0.03) following the exact solution of the (1 + 1) dimensional Kardar-Parisi-Zhang (KPZ) equation. The root mean square roughness follows also a scaling law for tFe < 120 ML leading to a growth exponent β = 0.73 ± 0.02. Shadowing and steering effects are discussed on the basis of our STM data.  相似文献   

10.
Two different growth modes of manganese silicide are observed on Si(1 0 0) with scanning tunneling microscopy. 1.0 and 1.5 monolayer Mn are deposited at room temperature on the Si(1 0 0)-(2 × 1) substrate. The as-grown Mn film is unstructured. Annealing temperatures between room temperature and 450 °C lead to small unstructured clusters of Mn or MnxSiy. Upon annealing at 450 °C and 480 °C, Mn reacts chemically with the Si substrate and forms silicide islands. The dimer rows of the substrate become visible again. Two distinct island shapes are found and identified as MnSi and Mn5Si3.  相似文献   

11.
《Surface science》1994,314(3):L937-L942
Monte Carlo simulations of an atomistic solid-on-solid model are used to study the effect of lattice misfit on the distribution of two-dimensional islands sizes as a function of coverage θ in the submonolayer aggregation regime of epitaxial growth. Misfit promotes the detachment of atoms from the perimeter of large pseudomorphic islands and thus favors their dissolution into smaller islands that relieve strain more efficiently. The number density of islands composed of s atoms exhibits scaling in the form Ns(θ) ~ θ/〈s〉2g(s/〈s〉) where 〈s〉 is the average island size. Unlike the case of homoepitaxy, a rate equation theory based on this observation leads to qualitatively different behavior than observed in the simulations.  相似文献   

12.
We have calculated the three-dimensional potential energy surfaces for the 1 2A′ and 1 2A″ states of BrCN+ at the MR-SDCI_DK+Q/[QZP-ANO-RCC (Br, C, N)] level of theory, where MR-SDCI_DK means ‘multi-reference single and double excitation configuration interaction calculation with Douglas-Kroll Hamiltonian.’ These ab initio potential energy surfaces have a common minimum (corresponding to the state) at a linear equilibrium structure with re(Br-C) = 1.735 Å and re(C-N) = 1.199 Å. Variational RENNER calculations yield a zero-point averaged structure (with the structural parameters calculated as expectation values over rovibrational wavefunctions) with 〈r(Br-C)〉0 = 1.739 Å, 〈r(C-N)〉0 = 1.204 Å, and 〈∠(Br-C-N)〉0 = 172(4)°. A severe Fermi resonance between 2ν2 and ν3 has been found theoretically for the 2A″ potential energy surface. Comparing the ab initio zero-point averaged structure with a recent, experimentally derived r0 structure, it is concluded that the effects of large-amplitude bending motion should be taken into account explicitly in the process of deriving the r0 structure from the experimental values of the rotational constants. The electronic structure of BrCN+ has also been discussed.  相似文献   

13.
A combination of in situ X-ray photoelectron spectroscopy analysis and ex situ scanning electron- and atomic force microscopy has been used to study the formation of copper islands upon Cu deposition at elevated temperatures as a basis for the guided growth of copper islands. Two different temperature regions have been found: (I) up to 250 °C only close packed islands are formed due to low diffusion length of copper atoms on the surface. The SiO2 film acts as a barrier protecting the silicon substrate from diffusion of Cu atoms from oxide surface. (II) The deposition at temperatures above 300 °C leads to the formation of separate islands which are (primarily at higher temperatures) crystalline. At these temperatures, copper atoms diffuse through the SiO2 layer. However, they are not entirely dissolved in the bulk but a fraction of them forms a Cu rich layer in the vicinity of SiO2/Si interface. The high copper concentration in this layer lowers the concentration gradient between the surface and the substrate and, consequently, inhibits the diffusion of Cu atoms into the substrate. Hence, the Cu islands remain on the surface even at temperatures as high as 450 °C.  相似文献   

14.
〈1 1 1〉-oriented Pb(Zr0.6Ti0.4)O3 thin films were elaborated in the same run by RF multitarget sputtering on Si/SiO2/TiO2/Pt(1 1 1) and LaAlO3/Pt(1 1 1) substrates. PZT thin films were textured, exhibiting 〈1 1 1〉 fibre texture on silicon substrates whereas epitaxial relationships were found when grown on LaAlO3/Pt(1 1 1). On the latter substrate, values of spontaneous polarization and of dielectric permittivity were measured close to that calculated previously along the 〈1 1 1〉 direction of PZT rhombohedral single crystal. On the contrary, spontaneous polarization and dielectric permittivity measured on PZT thin films deposited on platinized silicon were found deviating from calculated values. These different electrical results are attributed to different ferroelectric domain configurations.  相似文献   

15.
Magnetic properties of four sigma-phase Fe100−xVx samples with 34.4?x?55.1 were investigated by Mössbauer spectroscopy and magnetic measurements in the temperature interval 4.2-300 K. Four magnetic quantities, viz. hyperfine field, Curie temperature, magnetic moment and susceptibility, were determined. The sample containing 34.4 at% V was revealed to exhibit the largest values found up to now for the sigma-phase for average hyperfine field, 〈B〉=12.1 T, average magnetic moment per Fe atom, 〈μ〉=0.89 μB, and Curie temperature, TC=315.3 K. The quantities were shown to be strongly correlated with each other. In particular, TC is linearly correlated with 〈μ〉 with a slope of 406.5 K/μB, as well as 〈B〉 is so correlated with 〈μ〉, yielding 14.3 T/μB for the hyperfine coupling constant.  相似文献   

16.
Subwavelength ripples (<λ/4) are obtained by scanning a tightly focused beam (∼1 μm) of femtosecond laser radiation (λ = 800 nm, tp = 100 fs) over the surface of either bulk fused silica and silicon and Er:BaTiO3. The ripple pattern extends coherently over many overlapping laser pulses parallel and perpendicular to the polarisation. Investigated are the dependence of the ripple spacing on the spacing of successive pulses, the direction of polarisation and the material. The evolution of the ripples is investigated by applying pulse bursts with N = 1 to 20 pulses. The conditions under which these phenomena occur are specified, and some possible mechanisms of ripple growth are discussed. Potential applications are presented.  相似文献   

17.
3C-SiC(0 0 1) surfaces are considerably rough with the roughness root mean square value (Rms) of 1.3 nm, but the surfaces become considerably smooth (i.e., Rms of 0.5 nm) by heat treatment in pure hydrogen at 400 °C. Two-step nitric acid (HNO3) oxidation (i.e., immersion in ∼40 wt% HNO3 followed by that in 68 wt% HNO3) performed after the hydrogen treatment can oxidize 3C-SiC at extremely low temperature of ∼120 °C, forming thick SiO2 (e.g., 21 nm) layers. With no hydrogen treatment, the leakage current density of the 〈Al/SiO2/3C-SiC〉 metal-oxide-semiconductor (MOS) diodes is high, while that for the MOS diodes with the hydrogen treatment is considerably low (e.g., ∼10−6 A/cm2 at the forward gate bias of 1 V) due to the formation of uniform thickness SiO2 layers. The MOS diodes with the hydrogen treatment show capacitance-voltage curves with accumulation, depletion, and deep-depletion characteristics.  相似文献   

18.
Nanocrystallline willemite, Zn2−xMnxSiO4 (0.5≤x≤5 mol%), doped with variable concentration of divalent manganese ions, phosphor powders were prepared using the simple wet-chemical sol-gel method combined with furnace firing at 800, 900, and 1000 °C. X-ray diffraction (XRD) and high resolution X-ray photoelectron (HR-XPS) scans confirm the presence of willemite phase of Zn2SiO4. Laser-induced phosphorescence decay measurements of Zn2−xMnxSiO4 nanophosphors were investigated using high peak power pulsed UV nitrogen laser (λ=337.1 nm). The decay curves show non-single exponential behavior with long term decay rate. Various parameters describing the strength of optical transitions in atoms and molecules such as, Einstein's A and B coefficients, ‘f’, integrated cross-section, and transition dipole moment values have been calculated. The long term decay rate of optical transition parameters was found to be somewhat temperature and concentration dependent.  相似文献   

19.
The magnetocaloric effect (MCE) in the DyNi2, DyAl2 and Tb1−nGdnAl2 (n=0, 0.4, 0.6) was theoretically investigated in this work. The DyNi2 and DyAl2 compounds are described considering a model Hamiltonian which includes the crystalline electrical field anisotropy. The anisotropic MCE was calculated changing the magnetic field direction from 〈1 1 1〉 to 〈0 0 1〉 in DyNi2 and from 〈1 0 0〉 to 〈0 1 1〉 in DyAl2. The influence of the second- and first-order spin-reorientation phase transitions on the MCE that occurs in these systems is discussed. For the calculations of the MCE thermodynamic quantities in the Tb1−nGdnAl2 systems we take into account a two sites magnetic model, and good agreement with the available experimental data was obtained.  相似文献   

20.
Two off-critical blends of poly(2-vinylpyridine) and polystyrene, 2:3 and 3:2 (w:w) PVP:PS, were spin-cast (with varied domain scale R) onto periodically (λ = 4 μm) patterned substrate. The pattern consisted of two alternating symmetric stripes: Au attracting PVP and neutral self-assembled monolayer. The resulting droplet-type morphologies were recorded with Scanning Force Microscopy and examined with integral geometry approach. PVP-rich islands of the 2:3 PVP:PS films form, for a wide R/λ range, strongly anisotropic morphologies. They show up, for R/λ ∼ 0.5, a weak λ/2-substructure of smaller PVP droplets in addition to the domains periodic with λ. The 3:2 blend exhibits morphologies with dominant λ-structure of PVP ribbons, which encircle PS droplets. For R/λ ∼ 0.5, smaller PS domains are also present but no λ/2-substructure is formed. The |χE|-values of droplet surface density are reduced, as compared to homogeneous substrate, for the 3:2 blend (with |χE| → 0 for R ∼ λ). This effect is absent for the 2:3 mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号