首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We test the response of the √3 × √3α reconstructions formed by 1/3 monolayer of tin adatoms on silicon and germanium (1 1 1) surfaces upon doping with electrons or holes, using potassium or iodine as probes/perturbers of the initial electronic structures. From detailed synchrotron radiation photoelectron spectroscopy studies we show that doping with either electrons or holes plays a complimentary role on the Si and Ge surfaces and, especially, leads to complete conversion of the Sn 4d two-component spectra into single line shapes. We find that the low binding energy component of the Sn core level for both Si and Ge surfaces corresponds to Sn adatoms with higher electronic charge, than the Sn adatoms that contribute to the core level high binding energy signal. This could be analyzed as Sn adatoms with different valence state.  相似文献   

2.
Intermixed structures for alkalis (larger than Li) on close-packed substrates have previously been observed only on Al(1 1 1). This study shows that K forms an ordered intermixed structure on Pb(1 1 1). The structures of clean Pb(1 1 1) and Pb(1 1 1)-(√3 × √3)R30°-K were studied using dynamical low-energy electron diffraction (LEED). The clean Pb(1 1 1) surface at 47 K was found to be a relaxed version of the bulk structure, in agreement with an earlier study of the same surface [Y.S. Li, F. Jona, P.M. Marcus, Phys. Rev. B 43 (1991) 6337]. At room temperature, adsorption of K on this surface results in a (√3 × √3)R30° structure, which was shown using dynamical LEED to consist of K atoms substituted in surface vacancies. The K-Pb bond length was found to be 3.62 ± 0.3 Å, with no significant change to the Pb interlayer spacings.  相似文献   

3.
The adsorption, diffusion and ordering of hydrogen on Pd(1 1 1) was studied by scanning tunneling microscopy in the temperature range of 37-90 K. At low coverage isolated hydrogen atoms were observed. They formed √3×√3-1H islands as the coverage increased. Above 1/3 monolayer (ML) coverage areas of a new phase with √3×√3-2H structure were formed, with both structures coexisting between 1/3 and 2/3 ML. Finally a 1 × 1 structure was formed after high exposures of hydrogen above 50 K, with a coverage close to 1 ML. Atomically resolved images reveal that H binds to fcc hollow sites.  相似文献   

4.
An initial oxidation dynamics of 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface has been studied using high resolution X-ray photoelectron spectroscopy and supersonic molecular beams. Clean 4H-SiC(0 0 0 1)-(√3 × √3)R30° surface was exposed to oxygen molecules with translational energy of 0.5 eV at 300 K. In the first step of initial oxidation, oxygen molecules are immediately dissociated and atomic oxygens are inserted into Si-Si back bonds to form stable oxide species. At this stage, drastic increase in growth rate of stable oxide species by heating molecular beam source to 1400 K was found. We concluded that this increase in growth rate of stable oxide is mainly caused by molecular vibrational excitation. It suggests that the dissociation barrier is located in the exit channel on potential energy hypersurface. A metastable molecular oxygen species was found to be adsorbed on a Si-adatom that has two oxygen atoms inserted into the back bonds. The adsorption of the metastable species is neither enhanced nor suppressed by molecular vibrational excitation.  相似文献   

5.
Y. Fukaya  A. Kawasuso 《Surface science》2006,600(16):3141-3146
The atomic structure of Si(1 1 1)-√21 × √21-Ag surface, which is formed by the adsorption of small amount of Ag atoms on the Si(1 1 1)-√3 × √3-Ag surface, was determined by using reflection high-energy positron diffraction. The rocking curve measured from the Si(1 1 1)-√21 × √21-Ag surface was analyzed by means of the intensity calculations based on the dynamical diffraction theory. The adatom height of the extra Ag atoms from the underlying Ag layer was determined to be 0.53 Å with a coverage of 0.14 ML, which corresponds to three atoms in the √21 × √21 unit cell. From the pattern analyses, the most appropriate adsorption sites of the extra Ag atoms were proposed.  相似文献   

6.
Y. Fukaya  A. Kawasuso 《Surface science》2007,601(22):5187-5191
The Au adsorption induced √21 × √21 super-lattice structure on the Si(1 1 1)-√3 × √3-Ag structure has been investigated using reflection high-energy positron diffraction. The height of the Au adatom was determined to be 0.59 Å from the underlying Ag layer from the rocking curve analysis with the dynamical diffraction theory. The adatoms were preferentially situated at the center of the large Ag triangle of the inequivalent triangle structure of the Si(1 1 1)-√3 × √3-Ag substrate. From the intensity distribution in the fractional-order Laue zone, the in-plane coordinate of the Au adatoms was obtained.  相似文献   

7.
Density functional theory (DFT) for generalized gradient approximation calculations has been used to study the adsorption of atomic oxygen and water molecules on Ni(1 1 1) and different kind of Ni-Cr(1 1 1) surfaces. The fcc hollow site is energetically the most favorable for atomic oxygen adsorption and on top site is favorable for water adsorption. The Ni-Cr surface has the highest absorption energy for oxygen at 6.86 eV, followed by the hcp site, whereas the absorption energy is 5.56 eV for the Ni surface. The Ni-O bond distance is 1.85 Å for the Ni surface. On the other hand, the result concerning the Ni-Cr surface implies that the bond distances are 1.93-1.95 Å and 1.75 Å for Ni-O and Cr-O, respectively. The surface adsorption energy for water on top site for two Cr atom substituted Ni-Cr surface is 0.85 eV. Oxygen atoms prefer to bond with Cr rather than Ni atoms. Atomic charge analysis demonstrates that charge transfer increases due to the addition of Cr. Moreover, a local density of states (LDOS) study examines the hybridization occurring between the metal d orbital and the oxygen p orbital; the bonding is mainly ionic, and water bonds weakly in both cases.  相似文献   

8.
Core level shift scanned-energy mode photoelectron diffraction using the two distinct components of the C 1s emission has been used to determine the structure of the Pt(1 1 1)c(√3 × 5)rect.-CO phase formed by 0.6 ML of adsorbed CO. The results confirm earlier assignments of these components to CO in atop and bridging sites, further confirm that the best structural model involves a 2:1 occupation ratio of these two sites, and provides quantitative structural parameter values. In particular the Pt-C chemisorption bondlengths for the atop and bridging sites are, respectively, 1.86 ± 0.02 Å and 2.02 ± 0.04 Å. These values are closely similar to those found in the 0.5 ML coverage c(4 × 2) phase, involving an atop:bridge occupation ratio of 1:1, obtained in earlier quantitative low energy electron diffraction studies. The results also indicate a clear tilt of the molecular axis of atop CO species in this compression phase, consistent with the finding of an earlier electron-stimulated desorption ion angular distribution investigation.  相似文献   

9.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

10.
Low energy ion scattering spectroscopy (LEISS) has been used to characterize the evolution of ordered structures of S on the Pd(1 1 1) surface during annealing. During exposure of the Pd(1 1 1) surface to 0.7 L H2S at 300 K—conditions that produce the S(√3 × √3)R30 overlayer—the intensity of the Pd LEIS signal decreases and a feature assigned to adsorbed S appears as the adsorbed layer forms. When the surface is held at 300 K after exposure to H2S is stopped, the LEIS Pd intensity partially recovers and the S signal weakens, presumably as surface S atoms assume their equilibrium positions in the S(√3 × √3)R30 overlayer. Subsequent annealing of the S(√3 × √3)R30 structure at 700 K causes it to convert into a S(√7 × √7)R19 overlayer, whose LEIS spectrum is identical to that of clean Pd(1 1 1). The absence of LEIS evidence for S atoms at the exposed surface of the S(√7 × √7)R19 overlayer is at odds with published models of a mixed Pd-S top layer. Despite the similarity of the LEIS spectra of Pd(1 1 1) and Pd(1 1 1)-S(√7 × √7)R19, their activities for dissociative hydrogen adsorption are very different—the former readily adsorbs hydrogen at 100 K, while the latter does not—suggesting that S exerts its influence on surface chemistry from subsurface locations.  相似文献   

11.
J. Wang  Y. Liu  M.H. Xie 《Surface science》2006,600(14):169-174
A new reconstruction of √3 × √3-R30° has been observed on a GaN film grown on a 6H-SiC (0 0 0 1)-√3 × √3 surface using RHEED and LEED experimental techniques. The experimental LEED PF shows that the GaN film is Ga-terminated hexagonal. The surface is a mixture of two structures with a single bilayer height difference between them. One is a √3 × √3-R30° reconstruction with Ga-adatoms occupying the T4 sites. Another is a Ga-terminated 1 × 1 with no extra Ga on top. The area ratio of the √3 × √3 part to the 1 × 1 part is slightly larger than 1. The first principle total energy calculations and Tensor-LEED I-V curves simulations further confirm this structure model.  相似文献   

12.
M. Caffio  A. Atrei 《Surface science》2007,601(2):528-535
The alloying process of Ti deposited on Cu(0 0 1) was studied by means of XPS, LEIS, XPD and LEED intensity analysis. With the sample held at 570 K, a linear decrease of the Cu LEIS signal as a function of the amount of Ti deposited is observed in the early stages of deposition until a constant value is reached. At the onset of the plateau a c(√2 × 5√2)R45° LEED pattern starts to be visible. XPD and LEED intensity measurements were performed for the c(√2 × 5√2)R45° phase prepared depositing ca. 1.5 monolayer of Ti. The angle-scanned XPD curves measured for the phase c(√2 × 5√2)R45° reveal that Ti atoms substitute Cu atoms in the fcc lattice of the substrate. The polar XPD curves show that at least the first four layers of the substrate are involved in the alloying process. We found that the (3 1 0) plane of the Cu4Ti alloy (D1a type-structure) fits, without significant contraction or expansion of the lattice parameters, the c(√2 × 5√2)R45° structure. The intensity versus energy curves of the diffracted beams were calculated on the basis of this structural model using the tensor LEED method. The results of the LEED intensity analysis provide a further evidence of the formation of a slab of Cu4Ti(3 1 0) layers.  相似文献   

13.
The Au/Ti(0 0 0 1) adsorption system was studied by low energy electron diffraction (LEED) and photoemission spectroscopy with synchrotron radiation after step-wise Au evaporation onto the Ti(0 0 0 1) surface. For adsorption of Au at 300 K, no additional superstructures were observed and the (1 × 1) pattern of the clean surface simply became diffuse. Annealing of gold layers more than 1 ML thick resulted in the formation of an ordered Au-Ti surface alloy. Depending on the temperature and annealing time, three surface reconstructions were observed by LEED: (√3 × √3) R30°, (2 × 2) and a one-dimensional incommensurate (√3 × √3) rectangular pattern. The Au 4f core level and valence band photoemission spectra provided evidence of a strong chemical interaction between gold and titanium. The data indicated formation of an intermetallic interface and associated valence orbital hybridization, together with diffusion of gold into the bulk. Au core-level shifts were found to be dependent on the surface alloy stoichiometry.  相似文献   

14.
The 3 × 3 and √3 × √3 reconstructions on 6H-SiC(0 0 0 1) surface were obtained via depositing thin silicon layer and annealing it in ultrahigh vacuum (without Si flux). Rocking curves of reflection high energy electron diffraction (RHEED) were measured for integer and fractional order beams. They were fitted with results of many-beam calculation on the basis of dynamical theory of RHEED to determine structural parameters. For √3 × √3 superstructure, it was found that the occupancy of adatom states is 0.45 (incomplete coverage). In the sequence of Si-C double layers ABCACB, the lattice is terminated with the layer A. For 3 × 3 superstructure, the rocking curves support the model with twisted tetra-cluster. The best-fit twist is as half of that predicted in ab initio calculations; it is due to limited source of Si atoms to build up the superstructure. Larger twist correlates with higher occupancy of corner sites and with slower cooling rate of the sample after annealing.  相似文献   

15.
P. Hanyš 《Surface science》2007,601(18):3717-3721
An ultra thin Sn layer (6 Å) was deposited onto Rh(1 1 1) single crystal surface. We followed changes in low energy electron diffraction (LEED) pattern during progressive annealing together with development of CO adsorption capacity and photoelectron spectra obtained using synchrotron radiation. Surface bimetallic alloy development with increasing temperature was followed by LEED and synchrotron radiation photoelectron spectroscopy (SRPES). LEED results show several surface structure of Sn/Rh(1 1 1) sample in dependence on sample temperature. If it increases, the surface structure develops to the stable ordered (√3 × √3)R30° structure. Surface CO adsorption depends strongly on the amount of Sn in the top sample layer then it corresponds to the development of the surface structure. The CO adsorption capacity raises with increasing temperature.Photoelectron spectra of Sn and Rh core levels and their shifts and shapes were studied during the annealing and CO adsorption. The resulting spectra are used to discuss the Sn-Rh surface alloy creation.The goal of this paper is to demonstrate the CO adsorption on the Sn/Rh(1 1 1) surface. Valence band spectra measured at different primary energies are presented to demonstrate this effect. These spectra show different adsorption properties of the studied system in dependence on the amount of Sn in the top layer and geometric structure of the surface.  相似文献   

16.
A study of surface and interface properties of reconstructed Au-SiC(0 0 0 1) surfaces is reported. Two reconstructions were prepared on SiC(0 0 0 1), a √3 × √3R30° and a Si-rich 3 × 3, before Au deposition and subsequent annealing at different temperatures. For the Si-rich 3 × 3 surface the existence of three stable reconstructions 2√3 × 2√3R30°, 3 × 3 and 5 × 5 are revealed after deposition of Au layers, 4-8 Å thick, and annealing at progressively higher temperatures between 500 and 950 °C. For the 2√3 surface two surface shifted Si 2p components are revealed and the Au 4f spectra clearly indicate silicide formation. The variation in relative intensity for the different core level components with photon energy suggests formation of an ordered silicide layer with some excess Si on top. Similar core level spectra and variations in relative intensity with photon energy are obtained for the 3 × 3 and 5 × 5 phases but the amount of excess Si on top is observed to be smaller and an additional weak Si 2p component becomes discernable.For the √3 surface the evolution of the core level spectra after Au deposition and annealing is shown to be distinctly different than for the Si-rich 3 × 3 surface and only one stable reconstruction, a 3 × 3 phase, is observed at similar annealing temperatures.  相似文献   

17.
The adsorption of CO on Pt(1 1 1), (2 × 2) and (√3 × √3)R30° Sn/Pt(1 1 1) surface alloys has been studied using temperature programmed desorption (TPD), low energy electron diffraction (LEED) and infrared reflection adsorption spectroscopy (IRAS). The presence of Sn in the surface layer of Pt(1 1 1) reduces the binding energy of CO by a few kcal/mol. IRAS data show two C-O stretching frequencies, ∼2100 and ∼1860 cm−1, corresponding to atop and bridge bonded species, respectively. Bridge bonded stretching frequencies are only observed for Pt(1 1 1) and (2 × 2) Sn/Pt(1 1 1) alloy surfaces. A slight coverage dependence of the vibrational frequencies is observed for the three surfaces. High pressure IRAS experiments over a broad temperature range show no indication of bridge bonded CO on any of the three surfaces. Direct CO adsorption on Sn sites is not observed over the measured temperature and pressure ranges.  相似文献   

18.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

19.
Adsorption of H2 molecule on the Ti (0 0 0 1)-(2 × 1) surface was studied by density functional theory with generalized gradient approximation (GGA). The parallel and vertical absorption cases were investigated in detail by adsorption energy and electronic structure analysis, we obtained three stable configurations of FCC-FCC (the two H atoms adsorption on the two adjacent fcc sites of Ti (0 0 0 1) surface, respectively), HCP-HCP (the two H atoms adsorption on the two adjacent hcp sites of Ti (0 0 0 1) surface, respectively) and FCC-HCP (the one H atom adsorption on the fcc site and the other adsorption on the near hcp site) based on the six different parallel adsorption sites after the H2 molecule dissociates. However, all the end configurations of four vertical adsorption sites were unstable, H2 molecule was very easy to desorb from Ti surface. The H-H bond breaking and Ti-H bond forming result from the H2 molecule dissociation. H-H bond breaking length ranges from 1.9 Å to 2.3 Å for different adsorption configurations due to the strong Ti-H bond forming. The H2 dissociative approach and the end stable configurations formation in parallel adsorption processes are attributed to the quantum mechanics steering effects.  相似文献   

20.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号