首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a method for ionic liquid based dispersive liquid-liquid microextraction of Co(II), Cu(II), Mn(II), Ni(II) and Zn(II), followed by their determination via flow injection inductively coupled plasma optical emission spectrometry. The method is making use of the complexing agent 1-(2-thenoyl)-3,3,3-trifluoracetone, the ionic liquid 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, and of ethanol as the dispersing solvent. After extraction and preconcentration, the sedimented ionic liquid (containing the target analytes) is collected, diluted with 1-propanol, and introduced to the ICP-OES. Effects of pH, ionic strength, ligand to metal molar ratio, volumes of extraction and disperser solvents on the performance of the microextraction were optimized in a half-fractional factorial design. The significant parameters were optimized using a face-centered central composite design. The method has detection limits between 0.10 and 0.20?ng?mL?1 of the metal ions, preconcentration factors between 79 and 102, linear responses in 0.25 to 200?ng?mL?1 concentration ranges, and relative standard deviations of 3.4 to 6.0%. The method was successfully applied to the analysis of drinking water, a fish farming pond water, and waste water from an industrial complex.
Figure
Ionic liquid based dispersive liquid-liquid microextraction of Co, Cu, Mn, Ni and Zn followed by determination via flow injection inductively coupled plasma optical emission spectrometry  相似文献   

2.
A rapid and novel method combining dispersive liquid–liquid microextraction and high-performance liquid chromatography coupled with fluorescence detection was developed for the determination of donepezil in human urine. Parameters affecting extraction efficiency and chromatographic determination, such as the type and volume of the extraction and disperser solvent, pH of sample for dispersive liquid–liquid microextraction, mobile-phase composition, pH, column oven temperature, and flow rate for chromatographic determination, were evaluated and optimized. Using a C18 core–shell column (7.5 × 4.6?mm, 2.7?μm), the determination of donepezil was accomplished within 5?min. Under optimum conditions, developed method was linear in the range of 0.5–25?ng?mL?1 with the correlation coefficient >0.99. Limit of detection was 0.15?ng?mL?1. The relative standard deviation at three concentration levels (2, 12.5, and 20?ng?mL?1) was less than 11% with accuracy in the range of 96.9–102.8%. The results of this study demonstrate that the use of dispersive liquid–liquid microextraction and core–shell column can be considered as a powerful tool for the analysis of donepezil in human urine.  相似文献   

3.
We report on the determination of bisphenol A and 2-naphthol in water samples using ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction combined with HPLC. Parameters governing the extraction efficiency (disperser solvent, volume of extraction and disperser solvent, pH, temperature, extraction time) were optimized and resulted in enrichment factors of 112 for bisphenol A and of 186 for 2-naphthol. The calibration curve was linear with correlation coefficients of 0.9995 and 0.9998, respectively, in the concentration range from 1.5 to 200?ng?mL?1. The relative standard deviations are 2.3% and 4.1% (for n?=?5), the limits of detection are 0.58 and 0.86?ng?mL?1, and relative recoveries in tap, lake and river water samples range between 100.1 and 108.1%, 99.4 and 106.2%, and 97.1 and 103.8%, respectively.
Figure
IL-CIA-DLLME has a high enrichment factor (112, 186), acceptable relative recovery (97.1%?C108.1%), good repeatability (2.3%, 4.1%) and a wide linear range(1.5?C200?ng?mL?1 ) for the determination of bisphenol A and 2-naphthol.  相似文献   

4.
A novel liquid-phase microextraction method, continuous-flow microextraction (CFME), combined with high-performance liquid chromatography and variable-wavelength detection, has been used for determination of phoxim in water samples. Extraction is conducted in a home-made glass chamber. A 3-μL drop of n-hexane is injected into the chamber by means of a microsyringe and held at the outlet tip of a PTFE connecting tube. The sample solution flows through the extraction glass chamber, past the tube, and the solvent drop interacts continuously with the sample solution and extraction proceeds simultaneously. The effects of different extraction solvents, solvent drop volume, sample flow rate, extraction time, and addition of salt on extraction efficiency were studied. Under the optimum extraction conditions a linear calibration plot, correlation coefficient (R2) 0.9988, was obtained for phoxim in the concentration range 0.01 to 10 μg mL?1. The limit of detection (LOD) was 5 ng mL?1 and the relative standard deviation (RSD) at the 100 ng mL?1 level was 4.1%. Lake water and tap water samples were successfully analyzed by use of the proposed method.  相似文献   

5.
This paper presents a fast and simple method for the extraction, preconcentration and determination of fluvoxamine, nortriptyline and maprotiline in urine using simultaneous derivatization and temperature‐assisted dispersive liquid–liquid microextraction (TA‐DLLME) followed by gas chromatography–flame ionization detection (GC‐FID). An appropriate mixture of dimethylformamide (disperser solvent), 1,1,2,2‐tetrachloroethane (extraction solvent) and acetic anhydride (derivatization agent) was rapidly injected into the heated sample. Then the solution was cooled to room temperature and cloudy solution formed was centrifuged. Finally a portion of the sedimented phase was injected into the GC‐FID. The effect of several factors affecting the performance of the method, including the selection of suitable extraction and disperser solvents and their volumes, volume of derivatization agent, temperature, salt addition, pH and centrifugation time and speed were investigated and optimized. Figures of merit of the proposed method, such as linearity (r2 > 0.993), enrichment factors (820–1070), limits of detection (2–4 ng mL?1) and quantification (8–12 ng mL?1), and relative standard deviations (3–6%) for both intraday and interday precisions (concentration = 50 ng mL?1) were satisfactory for determination of the selected antidepressants. Finally the method was successfully applied to determine the target pharmaceuticals in urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A method was developed for the determination of gold ion in water samples using microextraction based on the ultrasound-assisted emulsification of solidified floating organic drops, followed by the flame atomic absorption spectrometry. N-(4-{4-[(anilinocarbothioyl)amino]benzyl}phenyl)-N-phenylthiourea was used as chelating agent. The parameters affecting the extraction and complex formation (including the type and volume of the extracting solvent, time of sonication and centrifugation, pH, amount of the chelating agent, and sample ionic strength) were optimized. Under the optimum conditions, the calibration graph is linear in the range from 1.5 to 400 ng mL?1, with a limit of detection of 0.45 ng mL?1. The relative standard deviation for ten replicate determinations of gold ion in a concentration of 175 ng mL?1 was 1.7%. The procedure was successfully applied to the determination of gold in water samples, in pharmaceutical and synthetic samples, and in a standard reference material.
Figa
The schematic procedure of the ultrasound-assisted emulsification solidified floating organic drop microextraction is shown in above figure from A to E.  相似文献   

7.
Two liquid-phase microextraction (LPME) approaches, static direct-immersed single-drop microextraction (DI-SDME) and continuous-flow microextraction (CFME), were used to extract methomyl in water samples and their respective extraction efficiencies were compared. Several important parameters affecting extraction efficiency such as the type of extraction solvent, solvent drop volume, stirring speed or flow rate, extraction time and salt concentration were optimised. The optimised conditions were as follows: 3.0-µL tetrachloroethane (C2H2Cl4) as the extraction solvent, 15% NaCl (w/v), 15 min extraction time and stirring speed at 600 rpm for DI-SDME; 3.5-µL C2H2Cl4 as the extraction solvent, 15% NaCl (w/v), 21 min extraction time and flowing rate at 0.8 mL min?1 for CFME. Under the previous optimal conditions, the linear range, detection limit (S/N = 3) and precision (RSD, n = 6) were 5.0-5000 ng mL?1, 1.5 ng mL?1, 6.9% for DI-SDME, and 4.0–10000 ng mL?1, 2.5 ng mL?1, 4.6% for CFME, respectively. Lake and river water samples were successfully analysed by DI-SDME and CFME. The result demonstrated that both SDME and CFME techniques are simple, low cost and amity to environment. As a result, the two approaches have tremendous potential in trace analysis of methomyl in natural waters.  相似文献   

8.
A new separation procedure for determination of palladium using dispersive liquid–liquid microextraction with dicyclohexano-18-crown-6 as complexing reagent was developed. In this method, potassium–dicyclohexano-18-crown-6 was used as a hydrophobic complex for the microextraction of palladium as PdCl4 2? complex ion. The main factors affecting DLLME efficiency, such as type and volume of extractant and disperser solvent, concentration of chelating reagent, concentration of KCl and pH were optimized. Under the optimal conditions, the limit of detection for palladium was 16.0 ng mL?1 with enrichment factor of 138. The present method was applied to the determination of palladium in water samples with satisfactory analytical results. The method was simple, rapid, cost efficient and sensitive for the extraction and preconcentration of palladium.  相似文献   

9.
In this research, a novel microextraction technique based on ionic liquids (ILs) termed cold-induced aggregation microextraction (CIAME) is developed. In this method, very small amounts of 1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6] and 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [Hmim][Tf2N] (as extractant solvents) were dissolved in a sample solution containing Triton X-114 (as an anti-sticking agent). Afterwards, the solution was cooled in the ice bath and a cloudy solution was formed. After centrifuging, the fine droplets of extractant phase were settled to the bottom of the conical-bottom glass centrifuge tube.CIAME is a simple and rapid method for extraction and preconcentration of metal ions from water samples and can be applied for the sample solutions containing high concentration of salt and water miscible organic solvents. Furthermore, this technique is much safer in comparison with the organic solvent extraction.Performance of the technique was evaluated by determination of the trace amounts of mercury as a test analyte in several real water samples. Michler thioketone (TMK) was chosen as a complexing agent. Analysis was carried out using spectrophotometric detection method. Type and amount of IL and the surfactant, temperature and the other parameters were optimized. Under the optimum conditions, the limit of detection (LOD) of the method was 0.3 ng mL−1 and the relative standard deviation (R.S.D.) was 1.32% for 30 ng mL−1 mercury.  相似文献   

10.
A new method for the determination of four sulfonylurea herbicides (metsulfuron-methyl, chlorsulfuron, bensulfuron-methyl and chlorimuron-ethyl) in water samples was developed by dispersive liquid–liquid microextraction coupled with high performance liquid chromatography-diode array detector. Parameters that affect the extraction efficiency, such as the kind and volume of the extraction and disperser solvent, extraction time and salt addition, were investigated and optimised. Under the optimum conditions, the enrichment factors were in the range between 102 and 216. The linearity of the method was obtained in the range of 1.0–100 ng mL?1 with the correlation coefficients (r) ranging from 0.9982 to 0.9995. The method detection limits were 0.2–0.3 ng mL?1. The proposed method has been successfully applied to the analysis of target sulfonylurea herbicides in river, stream and well water samples with satisfactory results.  相似文献   

11.
Dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction and preconcentration of diethofencarb (DF) and pyrimethanil (PM) in environmental water. In the method, a suitable mixture of extraction solvent (50 µL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) are injected into the aqueous samples (5.00 mL) and the cloudy solution is observed. After centrifugation, the enriched analytes in the sediment phase were determined by HPLC-VWD. Different influencing factors, such as the kind and volume of extraction and dispersive solvent, extraction time and salt effect were investigated. Under the optimum conditions, the enrichment factors for DF and PM were both 108 and the limit of detection were 0.021 ng mL?1 and 0.015 ng mL?1, respectively. The linear ranges were 0.08–400 ng mL?1 for DF and 0.04–200 ng mL?1 for PM. The relative standard deviation (RSDs) were both almost at 6.0% (n = 6). The relative recoveries from samples of environmental water were from the range of 87.0 to 107.2%. Compared with other methods, DLLME is a very simple, rapid, sensitive (low limit of detection) and economical (only 5 mL volume of sample) method.  相似文献   

12.
Dispersive liquid-liquid microextraction as a rapid, simple and efficient method coupled with high performance liquid chromatography-UV-Vis detection was used for sample preparation and subsequent determination of carbazole, tri nitro carbazole (TrNC) and tetra nitro carbazole in water samples. The influence of several important variables on the extraction efficiency has been evaluated. The methods works best with chloroform as an extractant and acetonitrile as the dispersive solvent. Under optimum conditions, the calibration curve is linear in the range from 0.007 to 1.75?μg?mL?1 for TNC, 0.006 to 1.52?μg?mL?1 for TrNC, and 0.008–2.10?μg?mL?1 for carbazole. The limits of detection (LODs; at a signal-to-noise ratio of 3), range from 1.7 to 1.1?ng?mL?1, for TNC, TrNC and carbazole. Also, the relative standard deviations (RSD, n?=?6) for the extraction of TNC (at 174?ng?mL?1), TrNC (at 151?ng?mL?1) and carbazole (at 84?ng?mL?1) vary between 4.1 and 5.2%. The enrichment factors range from 179 to 186. The method was successfully applied to the determination of TNC, TrNC and carbazole in environmental samples.
Figure
Dispersive liquid-liquid microextraction is presented for the determination of carbazole based explosives (tri nitro carbazole (TrTNC) and tetra nitro carbazole (TNC)) using high performance liquid chromatography and UV–vis detection.  相似文献   

13.
An immersed solvent microextraction (SME) method was successfully developed for the trace enrichment of aryloxyphenoxypropionate herbicides from aquatic media. A microdrop of toluene was used as the extraction solvent. Some important extraction parameters such as type of solvent, solvent dropsize, stirring rate, ionic strength and extraction time were investigated and optimized. The microdrop volume of 1.5?µL, a sampling time of 25?min, and use of toluene were major parameters for achieving high enrichment factors. The linearity was studied by preconcentration of 4?mL of the water samples spiked with a standard solution of aryloxyphenoxypropionates at the concentration range of 0.15 to 30?ng?mL?1. The coefficient of determination was satisfactory (r 2?>?0.99) for all the studied analyte and the relative standard deviations (RSD%) values under the optimized condition were found to be 1.7 to 14.2% at the concentrations of 1 and 10?ng?mL?1. The enrichment factors were from 217 to 403 for the samples spiked at 1?ng?mL?1. Detection limits were obtained to be in the range of 0.05 to 0.15?ng?mL?1 using time-scheduled selected ion monitoring (SIM). The EI mass spectra of these herbicides revealed that fenoxaprop-P-ethyl and quizalofop-P-ethyl exhibited [M-COOC2H5]+ as the base peak while, clodinafop-propargyl, haloxyfop-etotyl and haloxyfop-P-methyl showed [M-C2H4COOC3H3]+, [M-CH2COOC4H8O]+ and [M-COOCH3]+ as the base peaks, respectively. The developed method was successfully applied to the extraction and determination of aryloxyphenoxypropionates in river water samples.  相似文献   

14.
A method based on molecular crowding and ionic liquids as reaction solvents has been used for the synthesis of molecularly imprinted polymers. Levofloxacin was selected as the template, polymethyl methacrylate was the molecular crowding agent, and 1‐butyl‐3‐methylimidazolium tetrafluoroborate (ionic liquid) was selected as the reaction solvent and porogen. The optimized proportion for the mixed porogen was dimethyl sulfoxide/ionic liquid/polymethyl methacrylate 1:1.6:5 in chloroform (150 mg mL?1). The morphology and chemical composition of levofloxacin imprinted polymers were assessed by scanning electron microscopy and Fourier transform infrared spectroscopy. The absorption experiments demonstrated that the levofloxacin imprinted polymers possess high selective recognition property to levofloxacin and analogs, including enrofloxacin, ciprofloxacin and gatifloxacin, which all belong to fluoroquinolones. An extraction method using levofloxacin imprinted polymers as sorbent followed by high‐performance liquid chromatography analysis was optimized for the determination of four fluoroquinolones in milk and lake water samples. Under the optimized conditions, good linearity was observed in a range of 5–1000 ng g?1 with the limit of detection between 0.3 and 0.5 ng g?1 for the four fluoroquinolones. The recoveries at three spiked levels ranged 82.4–98.3% with the relative standard deviation ≤4.9.  相似文献   

15.
In this study, a method of dispersive liquid phase microextraction combined with the flame atomic absorption spectrometry was proposed for the determination of trace Hg using diphenylthiocarbazone as chelating reagent. Several factors which have effect on the microextraction efficiency of Hg, such as pH, extraction and dispersive solvent type and their volume, concentration of the chelating agent, extraction time were investigated, and the optimized experimental conditions were established. After extraction, the enrichment factor was 68. The detection limit of the method was 45 ng mL?1, and the relative standard deviation for eight determinations of 2 μg mL?1 Hg was 1.7%. The results for the determination of Hg in environmental water samples (tap water, well water, mineral water and Caspian sea water) have demonstrated the applicability of the proposed method.  相似文献   

16.
As extraction solvents, ionic liquids have green characteristics. In this study, an environmentally benign analytical method termed temperature-controlled ionic liquid dispersive liquid phase microextraction (TIL-DLME) combined with ultra-highpressure liquid chromatography (UHPLC)-tunable ultraviolet detection (TUV) was developed for the pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in water samples. Significant parameters that may affect extraction efficiencies were examined and optimized, including the types and amount of ionic liquids, volume of the diluent, heating temperature, cooling time, salt effect and pH value. Under the optimum conditions, linearity of the method was observed in the ranges of 0.0100–100 μg L?1 for TCS and M-TCS, and 0.00500–50.0 μg L?1 for TCC with correlation coefficients (r 2) > 0.9903. The limits of detection (LODs) ranged from 1.15 to 5.33 ng L?1. TCS in domestic water and TCC in reclaimed water were detected at the concentrations of 1.01 and 0.126 μg L?1, respectively. The spiked recoveries of the three target compounds in reclaimed water, irrigating water, waste water and domestic water samples were obtained in the ranges of 68.4%–71.9%, 61.6%–87.8%, 58.9%–74.9% and 64.9%–92.4%, respectively. Compared with the previous dispersive liquid-liquid microextraction method (DLLME) about the determination of TCS, TCC and M-TCS, this method is not only more environmentally friendly but also more sensitive.  相似文献   

17.
A novel method, termed ionic liquid cold-induced aggregation dispersive liquid–liquid microextraction (IL-CIA-DLLME), combined with high-performance liquid chromatography (HPLC) was developed for the determination of three phthalate esters in water samples. Several important parameters influencing the IL-CIA-DLLME extraction efficiency, such as the type of extraction and disperser solvent, the volume of extraction and disperser solvent, temperature, extraction time and salt effect, were investigated. Under optimal extraction conditions, the enrichment factors and extraction recoveries ranged from 174 to 212 and 69.9 to 84.8%, respectively. Excellent linearity with coefficients of correlation from 0.9968 to 0.9994 was observed in the concentration range of 2–100 ng mL−1. The repeatability of the proposed method expressed as relative standard deviations ranged from 2.2 to 3.7% (n = 5). Limits of detection were between 0.68 and 1.36 ng mL−1. Good relative recoveries for phthalate esters in tap, bottled mineral and river water samples were obtained in the ranges of 91.5–98.1%, 92.4–99.2% and 90.1–96.8%, respectively. Thus, the proposed method has excellent potential for the determination of phthalate esters in the environmental field.  相似文献   

18.
We have evaluated an in-situ ionic liquid-dispersive liquid-liquid microextraction procedure for the determination of six endocrine disrupting phenols in seawaters and industrial effluents using HPLC. The optimized method requires 38???L of the water-soluble ionic liquid 1-butyl-3-methylimidazolium chloride, and 5?mL of seawater or industrial effluent. After appropriate work-up, a drop (~10???L) of an ionic liquid is formed that contains the analytes of interest. It is diluted with acetonitrile and injected into the HPLC system. This procedure is accomplished without heating or cooling the solutions. The method is characterized by (a) average relative recoveries of 90.2%, (b) enrichment factors ranging from 140 to 989, and (c) precisions (expressed as relative standard deviations) of less than 11% when using a spiking level of 10?ng?mL?1. The limits of detection range from 0.8?ng?mL?1 for 4-cumylphenol to 4.8?ng?mL?1 for bisphenol-A.
Figure
Scheme of the in situ IL-DLIME procedure to determine endocrine disrupting phenols in environmental waters.  相似文献   

19.
In the present work the determination of benzene, toluene, ethylbenzene and o-xylene (BTEX) in environmental sample solutions using gas chromatography with flame ionisation detection (GC-FID) combined with three different sampling techniques, such as; direct single drop microextraction (DI-SDME), headspace single drop microextraction (HS-SDME) and ultrasonic assisted HS-SDME, were compared. In all of these techniques, for the determination of BTEX, the experimental parameters such as organic solvent effect, extraction time, agitation speed and salting effect were optimised. At their optimised conditions of operation the detection limits, times of extraction and precision for the three techniques are established. A detailed comparison of the analytical performance characteristics of these techniques for final GC-FID determination of BTEX in water samples was given. The technique provided a linear range of 50–20000?ng?mL–1 for DI-SDME and 10–20000?ng?mL–1 for HS-SDME methods, good repeatability (RSDs <4.72–7.74% for DI-SDME and 1.80–7.05% for HS-SDME (n?=?5), good linearity (r?≥?0.9978) and limits of detection (LODs) in the range of 0.006–10?ng?mL?1 for DI-SDME, 0.1–3?ng?mL–1 for HS-SDME methods (S/N?=?3). Then the optimised techniques were also applied to real samples (river and waste waters) containing BTEX and similar precision (RSD?<?8.2,?n?=?3) was obtained.  相似文献   

20.
A new method for the determination of cadmium and lead in human teeth was developed based on dispersive liquid‐liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry determination. In the proposed approach, O,O‐diethyldithiophosphate (DDTP) was used as a chelating agent, and carbon tetrachloride and methanol were selected as extraction and dispersive solvents. Some factors influencing the extraction efficiency of cadmium and lead and their subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of 116 and 68 for cadmium and lead were achieved. The detection limit for cadmium and lead was 5.6 and 45 ng L?1, and the relative standard deviation (R.S.D) was 4.5% and 3.8% (n = 7, c = 1.0 ng mL?1), respectively. Verification of the accuracy of the method was carried out by analysis of a standard reference material (NIST 1486, bone meal). The method was successfully applied to the determination of trace amount of cadmium and lead in human teeth samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号