首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
N‐Alkynylindoles were divergently cyclized for the synthesis of multifused N‐heterocycles. An ortho ‐aryl palladium species was added to the α position of an ynamine to generate (Z )‐6‐alkylidene/benzylidene‐6H ‐isoindolo[2,1‐a ]indoles, while Pt‐catalyzed β‐addition through π‐activation gave 5‐alkyl/arylindolo[2,1‐a ]isoquinolines. Double cyclizations using PdCl2 and oxidant afforded bright yellow benzo[7,8]indolizino[2,3,4,5‐ija ]quinolines, the synthesis of which was also demonstrated in a different synthetic route.  相似文献   

2.
A novel palladium‐catalyzed CO‐gas‐ and autoclave‐free protocol for the synthesis of 11H‐pyrido[2,1‐b]quinazolin‐11‐ones has been developed. Quinazolinones, which are omnipresent motif in many pharmaceuticals and agrochemicals, were prepared in good yields by C?H bond activation and annulation using DMF as the CO surrogate. A 13CO‐labelled DMF control experiment demonstrated that CO gas was released from the carbonyl of DMF with acid as the promotor. The kinetic isotope effect (KIE) value indicated that the C?H activation step may not be involved in the rate‐determining step. This methodology is operationally simple and showed a broad substrate scope with good to excellent yields.  相似文献   

3.
Palladium‐catalyzed domino C?H/N?H functionalization for the synthesis of novel nitrogen‐bridged thienoacenes and 10H‐benzo[4,5]thieno[3,2‐b]indole derivatives from dihaloarene is reported. This domino sequence consists of initial C?H functionalization of the benzo[b]thiophene moiety, followed by Buchwald–Hartwig coupling. This transformation is also useful for the synthesis of highly π‐extended compounds.  相似文献   

4.
The mechanism of [{RuCl2(p‐cymene)}2]‐catalyzed oxidative annulations of isoquinolones with alkynes was investigated in detail. The first step is an acetate‐assisted C? H bond activation process to form cyclometalated compounds. Subsequent mono‐alkyne insertion of the Ru? C bonds of the cyclometalated compounds then takes place. Finally, oxidative coupling of the C? N bond of the insertion compounds occurs to afford Ru0 sandwich complexes that undergo oxidation to regenerate the catalytically active RuII complex with the copper oxidant and release the desired dibenzo[a,g]quinolizin‐8‐one derivatives. All of the relevant intermediates were fully characterized and determined by single crystal X‐ray diffraction analysis. The [{RuCl2(p‐cymene)}2]‐catalyzed C? H bond functionalization of isoquinolones with alkynes to synthesize dibenzo[a,g]quinolizin‐8‐one derivatives through C? H/N? H activation was also demonstrated.  相似文献   

5.
[Cp*RhIII]‐catalyzed C? H activation of arenes assisted by an oxidizing N? O or N? N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N? O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N? O bonds in both C? H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N? O bond acts as both a directing group for C? H activation and as an O‐atom donor.  相似文献   

6.
A direct ortho‐Csp2‐H acylmethylation of 2‐aryl‐2,3‐dihydrophthalazine‐1,4‐diones with α‐carbonyl sulfoxonium ylides is achieved through a RuII‐catalyzed C?H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl‐, heteroaryl‐, and alkyl‐substituted α‐carbonyl sulfoxonium ylides. Thereafter, 2‐(ortho‐acylmethylaryl)‐2,3‐dihydrophthalazine‐1,4‐diones were used as potential starting materials for the expeditious synthesis of 6‐arylphthalazino[2,3‐a]cinnoline‐8,13‐diones and 5‐acyl‐5,6‐dihydrophthalazino[2,3‐a]cinnoline‐8,13‐diones under Lawesson's reagent and BF3?OEt2 mediated conditions, respectively. Of these, the BF3?OEt2‐mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C?C and C?N bond formations.  相似文献   

7.
We describe a straightforward strategy for the synthesis of strongly fluorescent pyridoindoles by Pd‐catalyzed oxidative annulations of internal alkynes with C‐3 functionalized indoles through C?H/N?H bond activation in a one‐pot tandem process. Mechanistic investigations reveal the preferential activation of N?H indole followed by C?H activation during the cyclization process. Photophysical properties of pyridoindoles exhibited the highest fluorescence quantum yield of nearly 80 %, with emission color varying from blue to green to orange depending on the substructures. Quantum mechanical calculations provide insights into the observed photophysical properties. The strong fluorescence of the pyrido[1,2‐a]indole derivative has been employed in subcellular imaging, which demonstrates its localization in the cell nucleus.  相似文献   

8.
2‐(1H ‐benzo[d ]imidazol‐2‐yl)anilines reacted with haloketones including 5‐chloropentan‐2‐one and 6‐chlorohexan‐2‐one catalyzed by iodine, giving benzo[4,5]imidazo[1,2‐c ]pyrrolo[1,2‐a ]quinazoline and 6H ‐benzo[4,5]imidazo[1,2‐c ]pyrido[1,2‐a ]quinazoline derivatives, respectively. This domino‐type reaction formed two new heterocycles and three new covalent bonds in one‐pot procedure and provided a green method for the synthesis of fused pentacyclic heterocycles bearing both quinazoline and benzimidazole moieties in ionic liquids.  相似文献   

9.
Treatment of arylidene malononitriles 2A – C with 1‐cyanomethylisoquinoline 1 afforded 4‐amino‐2‐arylpyrido[2,1‐a ]isoquinoline‐1,3‐dicarbonitrile derivatives 5A – C , which converted to formimidates 6A – C via reaction with triethylorthoformate. Treatment of the latter compounds with hydrazine hydrate gave the corresponding amino–imino compounds 7A – C , which underwent Dimroth rearrangement to afford 13‐aryl‐1‐hydrazinylpyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinoline‐12‐carbonitrile 8A – C . The latter reacted with aldehyde to give 9a – i . Oxidative cyclization of the latter compounds 9a – i gave [1,2,4]triazolo[4″,3″:1′,6′]‐pyrimido[5′,4′:5,6]pyrido[2,1‐a ]isoquinolines 10a , d , g . Such compounds isomerized to the thermodynamically more stable isomers [1,2,4]triazolo[1″,5″:1′,6′]pyrimido[5′,4′:5,6]‐pyrido[2,1‐a ]isoquinolines 11a , d , g . Antimicrobial activities for some compounds were studied.  相似文献   

10.
Preparation of 4‐chloro‐3H‐benzo[b][1,4]diazepine‐2‐carbaldehyde 5 , which is used as a key intermediate in the synthesis of chalcones derivatives, via its condensation with some aromatic acetophenone derivatives under ethanol piperidine condition was described. Also illustrated was the reaction of such chalcones with available nucleophilics and reagents of active methylene group to afford new series of fused and isolated pyrazoles, isoxazolines pyrimidines, pyridines, triazolo[1,5‐a]pyrimidines, benzo[1,4]oxa(thia)zepines, and pyrido[1,2‐a]benzimidazoles incorporating 4‐chloro‐3H‐benzo[b][1,4]diazepine moiety, which have a potential pharmaceutical interest. Furthermore, condensation reaction of 4‐chloro‐3H‐benzo[b][1,4]diazepine‐2‐carbaldehyde with aromatic amine derivatives to afford the Schiff's bases was described. The C═N double bond of the latter compounds has been reacted with chloroketene to give β‐lactams and with sulfanylacetic acid to give the 2‐(4‐oxo‐1,3‐thiazolidinyl)‐substituted derivative. The structures of the newly prepared compounds were established by elemental analysis, IR, MS, and 1H NMR spectral analysis.  相似文献   

11.
The bonding situation in a series of biphenylene analogues – benzo[b]biphenylene and its dication, 4,10‐dibromobenzo[b]biphenylene, naphtho[2,3‐b]biphenylene and its dianion, benzo[a]biphenylene, (biphenylene)tricarbonylchromium, benzo[3,4]cyclobuta[1,2‐c]thiophene, benzo[3,4]cyclobuta[1,2‐c]thiophene 2‐oxide, benzo[3,4]cyclobuta[1,2‐c]thiophene 2,2‐dioxide, 4,10‐diazabenzo[b]biphenylene, biphenylene‐2,3‐dione, benzo[3,4]cyclobuta[1,2‐b]anthracene‐6,11‐dione, and 3,4‐dihydro‐2H‐benzo[3,4]cyclobuta[1,2]cycloheptene – where one of the two benzo rings of biphenylene is replaced by a different π‐system (B) was investigated on the basis of the NMR parameters of these systems. From the vicinal 1H,1H spin‐spin coupling constants, the electronic structure of the remaining benzo ring (A) is derived via the Q‐value method. It is found that increasing tendency of B to tolerate exocyclic double bonds at the central four‐membered ring of these systems favors increased π‐electron delocalization in the A ring. The analysis of the chemical shifts supports this conclusion. NICS (nucleus‐independent chemical shift) values as well as C,C bond lengths derived from ab initio calculations are in excellent agreement with the experimental data. The charged systems benzo[b]biphenylene dication and naphtho[2,3‐b]biphenylene dianion ( 7 2−) are also studied by 13C NMR measurements. The charge distribution found closely resembles the predictions of the simple HMO model and reveals that 7 2− can be regarded as a benzo[3,4]cyclobuta[1,2‐b]‐substituted anthracene dianion. It is shown that the orientation of the tricarbonylchromium group in complexes of benzenoid aromatics can be derived from the vicinal 1H,1H coupling constants.  相似文献   

12.
A concise, efficient and versatile synthesis of amino‐substituted benzo[b]pyrimido[5,4‐f]azepines is described: starting from a 5‐allyl‐4,6‐dichloropyrimidine, the synthesis involves base‐catalysed aminolysis followed by intramolecular Friedel–Crafts cyclization. Four new amino‐substituted benzo[b]pyrimido[5,4‐f]azepines are reported, and all the products and reaction intermediates have been fully characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry, and the molecular and supramolecular structures of three products and one intermediate have been determined. In each of N,2,6,11‐tetramethyl‐N‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐4‐amine, C22H24N5, (III), 4‐(1H‐benzo[d]imidazol‐1‐yl)‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, which crystallizes as a 0.374‐hydrate, C21H19N5·0.374H2O, (VIIIa), and 6,7,9,11‐tetramethyl‐4‐(5‐methyl‐1H‐benzo[d]imidazol‐1‐yl)‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C24H25N5, (VIIIc), the azepine ring adopts a boat conformation, but with a different configuration at the stereogenic centre in (VIIIc), as compared with (III) and (VIIIa). In the intermediate 5‐allyl‐6‐(1H‐benzo[d]imidazol‐1‐yl)‐N‐methyl‐N‐(4‐methylphenyl)pyrimidin‐4‐amine, C22N21N5, (VIIb), the immediate precursor of 4‐(1H‐benzo[d]imidazol‐1‐yl)‐6,8,11‐trimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (VIIIb), the allyl group is disordered over two sets of atomic sites having occupancies of 0.688 (5) and 0.312 (5). The molecules of (III) are linked into chains by a C—H…π(pyrimidine) hydrogen bond, and those of (VIIb) are linked into complex sheets by three hydrogen bonds, one of the C—H…N type and two of C—H…π(arene) type. The molecules of the organic component in (VIIIa) are linked into a chain of rings by two C—H…π(arene) hydrogen bonds, and these chains are linked into sheets by the water components; a single weak C—H…N hydrogen bond links molecules of (VIIIc) into centrosymmetric R22(10) dimers. Comparisons are made with some related compounds.  相似文献   

13.
The first comprehensive study of the synthesis and structure–property relationships of 2,2′‐bis(benzo[b]phosphole)s and 2,2′‐benzo[b]phosphole–benzo[b]heterole hybrid π systems is reported. 2‐Bromobenzo[b]phosphole P‐oxide underwent copper‐assisted homocoupling (Ullmann coupling) and palladium‐catalyzed cross‐coupling (Stille coupling) to give new classes of benzo[b]phosphole derivatives. The benzo[b]phosphole–benzo[b]thiophene and ‐indole derivatives were further converted to P,X‐bridged terphenylenes (X=S, N) by a palladium‐catalyzed oxidative cycloaddition reaction with 4‐octyne through the Cβ? H activation. X‐ray analyses of three compounds showed that the benzo[b]phosphole‐benzo[b]heterole derivatives have coplanar π planes as a result of the effective conjugation through inter‐ring C? C bonds. The π–π* transition energies and redox potentials of the cis and trans isomers of bis(benzo[b]phosphole) P‐oxide are very close to each other, suggesting that their optical and electrochemical properties are little affected by the relative stereochemistry at the two phosphorus atoms. The optical properties of the benzo[b]phosphole–benzo[b]heterole hybrids are highly dependent on the benzo[b]heterole subunits. Steady‐state UV/Vis absorption/fluorescence spectroscopy, fluorescence lifetime measurements, and theoretical calculations of the non‐fused and acetylene‐fused benzo[b]phosphole–benzo[b]heterole π systems revealed that their emissive excited states consist of two different conformers in rapid equilibrium.  相似文献   

14.
The repertoire of synthetic methods leading to aza‐analogues of polycyclic aromatic heterocycles has been enlarged by the discovery of the rearrangement of 10‐substituted benzo[h]quinolines into compounds bearing an azonia‐pyrene moiety. Acid‐mediated intramolecular cyclization of derivatives bearing ‐CH2CN and ‐CH2CO2Et groups led to compounds bearing a 5‐substituted benzo[de]pyrido[3,2,1‐ij]quinolinium core. Advanced photophysical studies including time‐correlated single photon counting (TCSPC) and transient absorption spectroscopy of 5‐aminobenzo[de]pyrido[3,2,1‐ij]quinolin‐4‐ium salt and 5H‐benzo[de]pyrido[3,2,1‐ij]quinolin‐5‐one showed their promising optical properties such as high fluorescence quantum yields (37–59 %), which was almost independent of the solvent, and high tenability of the absorption band position upon changing the solvent. The benzo[de]pyrido[3,2,1‐ij]quinolinium salt selectively stains nucleic acids (in the nucleus and mitochondria) in eukaryotic cells.  相似文献   

15.
In ferrocene‐1,1′‐diyl­bis­(di­phenyl­methanol)–2,2′‐dipyridyl­amine (1/1), [Fe(C18H15O)2]·C10H9N3, (I), there is an intramolecular O—H?O hydrogen bond [H?O 2.03 Å, O?O 2.775 (2) Å and O—H?O 147°] in the ferrocenediol component, and the two neutral molecular components are linked by one O—H?N hydrogen bond [H?N 1.96 Å, O?N 2.755 (2) Å and O—H?N, 157°] and one N—H?O hydrogen bond [H?O 2.26 Å, N?O 3.112 (2) Å and N—H?O 164°] forming a cyclic R(8) motif. One of the pyridyl N atoms plays no part in the intermolecular hydrogen bonding, but participates in a short intramolecular C—H?N contact [H?N 2.31 Å, C?N 2.922 (2) Å and C—H?N 122°].  相似文献   

16.
N‐Ylide complexes of Ir have been generated by C(sp3)?H activation of α‐pyridinium or α‐imidazolium esters in reactions with [Cp*IrCl2]2 and NaOAc. These reactions are rare examples of C(sp3)?H activation without a covalent directing group, which—even more unusually—occur α to a carbonyl group. For the reaction of the α‐imidazolium ester [ 3 H]Cl, the site selectivity of C?H activation could be controlled by the choice of metal and ligand: with [Cp*IrCl2]2 and NaOAc, C(sp3)?H activation gave the N‐ylide complex 4 ; in contrast, with Ag2O followed by [Cp*IrCl2]2, C(sp2)?H activation gave the N‐heterocyclic carbene complex 5 . DFT calculations revealed that the N‐ylide complex 4 was the kinetic product of an ambiphilic C?H activation. Examination of the computed transition state for the reaction to give 4 indicated that unlike in related reactions, the acetate ligand appears to play the dominant role in C?H bond cleavage.  相似文献   

17.
A Cu‐catalyzed [4+1] annulation of N‐aryl‐1,2,3,4‐tetrahydroisoquinolines (N‐aryl THIQs) with α‐diazoketones has been established under oxidative conditions, leading to the construction of a series of indolo[2,1‐a]isoquinolines with generally good yields. The reaction enables dediazotized dicarbonylation of α‐diazoketones, creating direct C(sp3)/C(sp2)?H bond bifunctionalization to access tetracyclic aza‐heterocyclic skeletons.  相似文献   

18.
A series of 3‐substituted 2‐thioxo‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 4a – e were synthesized from the reaction of 3‐aminonaphthalene‐2‐carboxylic acid 1 with isothiocyanate derivatives 2a – e . The alkylation of 4a – e with alkyl halides gave 3‐substituted 2‐alkylsulfanyl‐2,3‐dihydro‐1H‐benzo[g]quinazolin‐4‐ones 5a – o . S‐Glycosylation was carried out via the reaction of 4a – e with glycopyranosyl bromides 7a and 7b under anhydrous alkaline conditions. The structure of the compounds was established as S‐nucleoside and not N‐nucleoside. Conformational analysis has been studied by homonuclear and heteronuclear two‐dimensional NMR methods (2D DFQ‐COSY, heteronuclear multiple quantum coherence, and heteronuclear multiple bond correlation). The S site of alkylation and glycosylation was determined from the 1H and 13C heteronuclear multiple quantum coherence experiments.  相似文献   

19.
An electron‐deficient CpE rhodium(III) complex bearing a cyclopentadienyl ligand with two ethyl ester substituents catalyzes the tandem [2+2+2] annulation–lactamization of acetanilides with two alkynoates via cleavage of adjacent two C?H bonds to give densely substituted benzo[cd]indolones. The reactions of meta‐methoxy‐substituted acetanilides with two alkynoates also provided benzo[cd]indolones via cleavage of adjacent C?H/C?O bonds. Furthermore, 3,5‐dimethoxyacetanilides reacted with two alkynoates to give dearomatized spiro compounds.  相似文献   

20.
A new and efficient synthesis of 8H‐benzo[e]phenanthro[1,10‐bc]silines from 2‐((2‐(arylethynyl)aryl)silyl)aryl triflates under palladium catalysis has been developed. The reaction mechanism was experimentally investigated and a catalytic cycle involving C?H/C?H coupling through a new mode of 1,4‐palladium migration with concomitant alkene stereoisomerization is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号