首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The ability to control propagation of electromagnetic guided modes lies at the heart of integrated nanophotonics. Surface plasmon‐polaritons are a class of guided modes which can be employed in integrated optical systems. Here, we present a theoretical design of a coherent surface plasmon absorber which can perfectly harvest energy of coherently incident surface plasmons without parasitic scattering into free space modes. Excitation of free space modes which usually accompanies scattering of a surface plasmon by an interface boundary is avoided due to specially tailored anisotropy of the absorber. The concept of coherent SPP absorber is analyzed numerically for spatially non‐uniform and finite‐size structures. We believe that our results will be important for the development of integrated nanoplasmonic systems.  相似文献   

2.
Inside of a hyperbolic medium, the principal components of the permittivity tensor have opposite signs causing the medium to exhibit a ‘metallicbr’ type of response to light wave sin one direction, and a ‘dielectric’ response in the other. Our study shows that inside hyperbolic media, volume plasmon polaritons (VPPs) propagate along the characteristic planes, forming distinct, directionally dependent optical responses. This is similar to the propagation of conventional surface plasmon polaritons (SPPs) along the planar interfaces separating the isotropic dielectrics and metallic slabs. Interestingly, the plasmon polariton propagates along the resonance cone in a volume of hyperbolic metamaterial crossing the interfaces of the constitutive materials. The Young's double‐slit scheme is used to study the spatially‐confined diffraction in a hyperbolic slab, made of many thin planar layers of a metal and dielectric, to obtain the sub‐wavelength interference pattern at the output interface. Proof‐of‐concept systems for producing such patterns applicable to nanolithography and subwavelength probes are demonstrated.  相似文献   

3.
The spatiotemporal focusing of surface plasmon polariton (SPP) wave packets (WPs) by planar plasmonic‐lens coupling structures is described using combined femtosecond interferometric time‐resolved photoemission electron microscopy (ITR‐PEEM) imaging and model simulations. The focusing properties of lens structures inscribed lithographically into Ag films depend on the angle of incidence of the excitation field. Severe aberrations are introduced by the phase delay in the interaction of obliquely incident plane waves with the commonly employed circular arc‐shaped lens structures. It is shown that the aberration can be corrected by accounting for propagation delays caused by the incidence angle‐dependent retardation of the optical field‐lens structure interaction. The focusing of SPP‐WPs in both space and time is demonstrated with aberration corrected lens structures.  相似文献   

4.
Spatio temporal dynamics of the positive column of a dc neon glow discharge is studied and investigated experimentally and theoretically. Spatio temporal analysis by means of biorthogonal decomposition method (BOD) gives insights into the mechanism of irregularity and can be employed for characterization of spatio‐ temporal complexity. In the weak nonlinear region, the wave dynamics is approximated by an amplitude equation of the Ginzburg‐Landau equation (CGLE) with complex coefficients and an additional integral term based on a fluid model. In the present work we deal with irregular spatio‐temporal data. A comparison between the numerical analysis of the experimental data and simulation results are studied. A good agreement between the dynamical behaviour for experimental space‐time data and theoretical simulation space‐time results was obtained. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We theoretically investigate the control of surface plasmon polariton(SPP) generated at the interface of dielectric and graphene medium under Kerr nonlinearity. The controlled Kerr nonlinear signal of probe light beam in a dielectric medium is used to generate SPPs at the interface of dielectric and graphene medium. The positive, negative absorption, and dispersion properties of SPPs are modified and controlled by the control and Kerr fields. A large amplification(negative absorption) is noted for SPPs under the Kerr nonlinearity. The normal/anomalous slope of dispersion and propagation length of SPPs is modified and controlled with Kerr nonlinearity. This leads to significant variation in slow and fast SPP propagation. The controlled slow and fast SPP propagation may predict significant applications in nano-photonics, optical tweezers, photovoltaic devices, plasmonster, and sensing technology.  相似文献   

6.
We report the first observation of subradiance in plasmonic nanocrystals. Amplitude- and phase-resolved ultrafast transmission experiments directly reveal the coherent coupling between surface plasmon polaritons (SPPs) induced by periodic variations in the dielectric function. This interaction results in the formation of plasmonic band gaps and coupled SPP eigenmodes with different symmetries, as directly shown by near-field imaging. In antisymmetric modes, radiative SPP damping is strongly suppressed, increasing the SPP lifetime from 30 fs to more than 200 fs. The findings are analyzed within a coupled resonance model.  相似文献   

7.
Chiral surface plasmon polaritons (SPPs) can be generated by linearly polarized light incident at the end of a nanowire, exciting a coherent superposition of three specific nanowire waveguide modes. Images of chiral SPPs on individual nanowires obtained from quantum dot fluorescence excited by the SPP evanescent field reveal the chirality predicted in our theoretical model. The handedness and spatial extent of the helical periods of the chiral SPPs depend on the input polarization angle and nanowire diameter as well as the dielectric environment. Chirality is preserved in the free-space output wave, making a metallic nanowire a broad bandwidth subwavelength source of circular polarized photons.  相似文献   

8.
表面等离激元的聚焦与波导增强   总被引:1,自引:0,他引:1  
方哲宇  朱星 《物理》2011,40(9):594-600
近年来,表面等离激元学(plasmonics)已经形成一个新的学科热点.电子在金属与介质界面的集体振荡行为形成一种元激发——表面等离激元(surface plasomon polariton,SPP).由于其具有特殊的耦合与传播性质,与SPP相关的器件设计与应用成为目前纳米光子学领域的国际前沿研究方向.文章介绍了利用微...  相似文献   

9.
针对常用的光学滤波器滤波波长不可变的特点,提出一种利用表面等离子体激元效应实现可调制滤波的方法.该方法根据金属邻近电介质的介电常数发生改变时,金属与入射光波的表面等离子体激元耦合共振模式发生改变,以此实现滤波波长调制.在加工有亚波长纳米孔阵列的Au薄膜上制作了一可见光滤波器,实验中采用空气、酒精和油作为介质对器件进行调制.结果表明:相对于常用的光学滤波器,该器件由于可以方便地改变临近介质的介电常数,因此具有滤波波长连续可调、快速方便、波长变化精度高等特点.  相似文献   

10.
Since early 1990s, Mach–Zehnder interferometer has been used to investigate the interference of biphoton wave packets. Due to subpicosecond time coherence of biphoton generated by spontaneous parametric downconversion process, some physical processes are ignored in the interferometer, most likely the biphoton time‐domain interference. Here, the two‐photon interference phenomenon based on the Mach–Zehnder interferometer is theoretically studied, where the correlated photon pairs are produced by the four‐wave mixing in atomic system. In particular, the quantum interference effect to effectively control the coherent time of two‐photon by adjusting the input delay is used. In the damped Rabi oscillation regime, two‐photon bunching and antibunching effects are observed. In addition, in the group‐delay regime, the interference between biphoton precursor, slow‐light wave packets and also in between the precursor and the slow‐light wave packets is observed, which had never been reported before. These results may have potential applications in the fields of biphoton shaping and quantum information processing.  相似文献   

11.
Surface electromagnetic waves are characterized by the intrinsic spin‐orbit interaction which results in the fascinating spin‐momentum locking. Therefore, directional coupling of light to surface waves can be achieved through chiral nanoantennas. Here, we show that dielectric nanoantenna provides chiral response with strong spectral dependence due to the interference of electric and magnetic dipole momenta when placed in the vicinity of the metal‐air interface. Remarkably, chiral behaviour in the proposed scheme does not require elliptical polarization of the pump beam or the geometric chirality of the nanoantenna. We show that the proposed ultracompact and simple dielectric nanoantenna allows for both directional launching of surface plasmon polaritons on a thin gold film and their demultiplexing with a high spectral resolution.  相似文献   

12.
13.
A theoretical study predicts that surface-plasmon-polariton (SPP) waves may propagate along the interface of a columnar thin film (CTF) and a metal over a range of propagation directions relative to the morphology of the CTF. The range of propagation directions depends on the tilt of the columns in the CTF. The phase speed of the SPP wave varies mainly as a function of the tilt of the CTF columns. Both the confinement of the SPP wave to the interface and the decay of the SPP wave along the direction of propagation depend strongly on the direction of propagation relative to the morphologically significant plane of the CTF. The greater the columnar tilt in relation to the interface, the shorter is the range of propagation. Because of CTF porosity and the ability to engineer this biaxial dielectric material, the CTF–metal interface may be more attractive for sensor applications than the traditional dielectric–metal interface used for SPP-wave-based sensors.  相似文献   

14.
Two hundred years after Malus' discovery of optical anisotropy, the study of polarization‐driven optical effects is as active as ever, generating interest in new phenomena and potential applications. However, in ultrafast optics, the influence of polarization is frequently overlooked being considered as either detrimental or negligible. Here we demonstrate that spatio‐temporal couplings, which are inherent for ultrafast laser systems with chirped‐pulse amplification, accumulate in multi‐pulse irradiation and lead to a strongly anisotropic light‐matter interaction. Our results identify angular dispersion in the focus as the origin for the polarization dependence in modification, yielding an increase in modification strength. With tight focusing (NA ≥ ∼0.4), this non‐paraxial effect leads to a manifestation of spatio‐temporal couplings in photo‐induced modification. We devise a practical way to control the polarization dependence and exploit it as a new degree of freedom in tailoring laser‐induced modification in transparent material. A near‐focus, non‐paraxial field structure analysis of an optical beam provides insight on the origin of the polarization dependent modification. However, single pulse non‐paraxial corrected calculations are not sufficient to explain the phenomena confirming the experimental observations and exemplifying the need for multi‐pulse analysis.

  相似文献   


15.
Herein, an analysis of interference effects as a result of the electron evolution within a coherent transport medium is presented, offering a double‐dopant Coulomb potential structure. Injection of coherent electron states into the structure is used to investigate the effects on the current transport behavior within the quantum Wigner phase space picture. Quantum effects are outlined by using classical simulation results as a reference frame. The utilized signed particle approach inherently provides a seamless transition between the classical and quantum domain. Based on this the occurring quantum effects caused by the non‐locality of the action of the quantum potential, leading to spatial resonance, can be indentified. The resulting interference patterns enable novel applications in the area of entangletronics.  相似文献   

16.
The propagation properties of planar and non‐planar electron acoustic shock waves composed of stationary ions, cold electrons, and q‐non‐extensive hot electrons and positrons are studied in unmagnetized electron‐positron‐ion plasma. In this model, the Korteweg‐de Vries Burgers equation is obtained in the planar and non‐planar coordinates. We have investigated the combined action of the dissipation, non‐extensivity, density ratio of hot to cold electrons, concentration of positrons, and temperature difference of cold electrons, hot electrons, and positrons. It was found that the amplitude of shock wave in e‐p‐i plasma increases when the positron concentration and temperature increase. The same effect is observed in the case of kinematic viscosity η. Furthermore, it is noticed that spherical wave moves faster in comparison to the shock waves in cylindrical geometry. This difference arises due to the presence of the geometry term m/2τ. It should be noted that the contribution of the geometry factor comes through the continuity equation. Results of our work may be helpful to illustrate the different properties of shock wave features in different astrophysical and space environments like supernova, polar regions, and in the vicinity of black holes.  相似文献   

17.
Surface‐plasmon‐polariton waves are two‐dimensional electromagnetic surface waves that propagate at the interface between a metal and a dielectric. These waves exhibit unusual and attractive properties, such as high spatial confinement and enhancement of the optical field, and are widely used in a variety of applications, such as sensing and subwavelength optics. The ability to precisely control the spatial and spectral properties of the surface‐plasmon wave is required in order to support the growing interest in both research and applications of plasmonic waves, and to bring it to the next level. Here, we review the challenges and methods for shaping the wavefront and spectrum of plasmonic waves. In particular, we present the recent advances in plasmonic spatial and spectral shaping, which are based on the realization of plasmonic holograms for the optical nearfield.

  相似文献   


18.
韩清瑶  汤俊超  张弨  王川  马海强  于丽  焦荣珍 《物理学报》2012,61(13):135202-135202
表面等离激元是一种在金属与介质界面上激发并耦合电荷密度起伏的电磁振荡, 具有近场增强和短波长等特性, 在纳米光子学的研究中扮演重要角色. 将表面等离激元的效应用于单光子源的制备, 不但可以有效减小器件的体积, 而且可以有效提高单光子的辐射和收集效率. 本文根据表面等离激元的珀赛尔系数与光子态密度的关系, 采用局域态密度计算的方法, 分析了不同金属材料的局域态密度及珀赛尔系数的特性. 通过计算比较, 选择银为最佳金属材料, 并在此基础上讨论了探测距离和电介质材料对局域态密度和珀赛尔系数的影响, 为基于表面等离子激元的单光子源制备提供重要参数.  相似文献   

19.
<正>Light propagation through a metal/nonlinear dielectric material/metal(M-NL-M) structure is numerically studied.The design parameters of the M-NL-M structure are found with the waveguide theory so that the structure only supports the symmetric surface plasmon polaritons(SPP(0)) mode and the antisymmetric surface plasmon polaritons(SPP(1)) mode.The coupling between the two modes within the M-NL-M structure is exploited.Through controlling the propagation constants of the two modes with the intensity-dependent dielectric constant of the nonlinear Kerr material,an effective all-optical control of plasmonic signal modulator can be realized with this M-NL-M structure.  相似文献   

20.
In this paper, we investigate the excitation of surface plasmon polariton (SPP) in the metallic slit partly filled with dielectric by using the finite-difference time-domain method. It is found that the slit structure displays high asymmetry in the field distribution and SPP excitation due to the difference in matching degree of SPP wavevector on the two sides of slit exit. At certain incident wavelengths, the power flow carried by SPP modes on one side of slit exit is over three orders of magnitude greater than that on the other side, an efficient directional excitation is achieved. The SPP generation efficiencies on both sides of slit exit can be periodically adjusted by the dielectric width, but their changes are not synchronous, implying that such slit structure could be acted as a directional splitter/coupler. Moreover, the asymmetry degree of SPP excitation can also be modulated by the refractive index of dielectric layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号