首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
An automated 3D tracking technique for studying the motion of particles deep within the tumbling ball charge of an experimental grinding mill is described. The use of a Biplanar angioscope for the accurate location of objects moving in three dimensions is a novel application of this X-ray equipment. The X-ray beam used to produce the image data was parameterized using an accurately measured control frame. Preliminary experiments were conducted on a Perspex mill with a length and diameter of 140 mm. The digitally acquired X-ray images of the tumbling mill were processed using a fully automated imaging technique. The final 3D coordinates of the tracked particle trajectories are accurate to within 0.40 mm. This indicates that the technique is robust and thus capable of providing accurate verification data for the numerical modeling of the tumbling motion in mills.  相似文献   

2.
Numerical techniques have increasingly been used to model fluid–particle two-phase flows. Coupling the immersed boundary method (IBM) and discrete element method (DEM) is one promising approach for modeling particulate flows. In this study, IBM was coupled with DEM to improve the reliability and accuracy of IBM for determining the positions of particles during the sedimentation process within viscous fluids. The required ratio of the particle diameter to the grid size (D/dx) was determined by comparing the simulation results with the analytical solution and experimental data. A dynamic mesh refinement model was utilised in the IBM model to refine the computational fluid dynamics grid near the particles. In addition, an optimum coupling interval between the IBM and DEM models was determined based on the experimental results of a single particle sedimentation within silicon oil at a Reynolds number of 1.5. The experimental results and the analytical solution were then utilised to validate the IBM–DEM model at Reynolds numbers of 4.1, 11.6, and 31.9. Finally, the validated model was utilised to investigate the sedimentation process for more than one particle by modeling the drafting-kissing-tumbling process and the Boycott phenomenon. Benchmark tests showed that the IBM–DEM technique preserves the advantages of DEM for tracking a group of particles, while the IBM provides a reliable and accurate approach for modeling the particle–fluid interaction.  相似文献   

3.
Direct numerical simulations (DNS) are performed to study the behavior of a swarm of rising air bubbles in water, employing the front tracking method, which allows to handle finite-size bubbles. The swarms consist of monodisperse deformable 4 mm bubbles with a gas fraction of 5% and 15%. This paper focuses on the comparison of the liquid energy spectra and bubble velocity probability density functions (PDFs) with experimental data obtained by phase-sensitive constant-temperature anemometry (CTA) and three-dimensional particle tracking velocimetry (PTV), respectively.  相似文献   

4.
We investigate the effect of particle shape on the transportation mechanism in well-drilling using a three-dimensional model that couples computational fluid dynamics (CFD) with the discrete element method (DEM). This numerical method allows us to incorporate the fluid–particle interactions (drag force, contact force, Saffman lift force, Magnus lift force, buoyancy force) using momentum exchange and the non-Newtonian behavior of the fluid. The interactions of particle−particle, particle−wall, and particle−drill pipe are taken into account with the Hertz–Mindlin model. We compare the transport of spheres with non-spherical particles (non-smooth sphere, disc, and cubic) constructed via the multi-sphere method for a range of fluid inlet velocities and drill pipe inclination angles. The simulations are carried out for laboratory-scale drilling configurations. Our results demonstrate good agreement with published experimental data. We evaluate the fluid–particle flow patterns, the particle velocities, and the particle concentration profiles. The results reveal that particle sphericity plays a major role in the fluid–solid interaction. The traditional assumption of an ideal spherical particle may cause inaccurate results.  相似文献   

5.
Vigorous particle collisions and mechanical processes occurring during high-velocity pneumatic conveying often lead to particle degradation. The resulting particle size reduction and particle number increase will impact on the flow characteristics, and subsequently affect the electrostatic type of flow measurements. This study investigates this phenomenon using both experimental and numerical methods. Particle degradation was induced experimentally by recursively conveying the fillite material within a pneumatic pipeline. The associated particle size reduction was monitored. Three electrostatic sensors were embedded along the pipeline to monitor the flow. The results indicated a decreasing trend in the electrostatic sensor outputs with decreasing particle size, which suggested the attenuation of the flow velocity fluctuation. This trend was more apparent at higher conveying velocities, which suggested that more severe particle degradation occurred under these conditions. Coupled computational fluid dynamics and discrete element methods (CFD–DEM) analysis was used to qualitatively validate these experimental results. The numerical results suggested that smaller particles exhibited lower flow velocity fluctuations, which was consistent with the observed experimental results. These findings provide important information for the accurate application of electrostatic measurement devices in pneumatic conveyors.  相似文献   

6.
In this study, the three-dimensional physical model of pleated air filtration media was simplified to porous media model, and the calculation parameters of porous media were obtained based on experimental data. The model of V-shaped pleated air filter media is constructed, the height of the media pleat is 50 mm and the pleat thickness is 4 mm, the pleat angle is 3.7°. The Hertz-Mindlin contact model was modified by Johnson Kendall Roberts (JKR) adhesion contact model. The deposition process of particles in media was simulated based on computational fluid dynamics (CFD) theory and discrete element method (DEM). Results show that the CFD–DEM coupling method can be effectively applied to the macro research of pleated air filter media. The particles will form dust layer and dendrite structure on the fiber surface, and the dust layer will affect the subsequent air flow organization, and the dendrite structure will eventually form a “particle wall”. The formation of the “particle wall” will prevent the particles from moving further in the fluid domain, which makes area of pleated angle become the “low efficiency” part about the particle deposition. Compared with area of pleated angle, the particles are concentrated in the opening area and the middle area of the pleated to agglomerate and deposit.  相似文献   

7.
介绍了基于离散元法的干湿颗粒系统仿真软件DEMSIM。对于干颗粒系统,DEMSIM可以分析二维和三维颗粒系统的弹性和塑性接触碰撞过程;对于湿颗粒系统,DEMSIM采用传统的液桥模型;对于颗粒-流体系统,DEMSIM采用CFD-DEM细观耦合模型模拟。一系列典型算例的模拟分析,验证了干湿颗粒系统仿真软件DEMSIM的精度和有效性。  相似文献   

8.
Numerical modeling of a complete powder coating process is carried out to understand the gas-particle two-phase flow field inside a powder coating booth and results of the numerical simulations are compared with experimental data to validate the numerical results. The flow inside the coating booth is modeled as a three-dimensional turbulent continuous gas flow with solid powder particles as a discrete phase. The continuous gas flow is predicted by solving Navier–Stokes equations using a standard kε turbulence model with non-equilibrium wall functions. The discrete phase is modeled based on a Lagrangian approach. In the calculation of particle propagation, a particle size distribution obtained through experiments is applied. The electrostatic field, including the effect of space charge due to free ions, is calculated with the use of the user defined scalar transport equations and user defined scalar functions in the software package, FLUENT, for the electrostatic potential and charge density.  相似文献   

9.
Size-reduction systems have been extensively used in industry for many years. Nevertheless, reliable engineering tools to be used to predict the comminution of particles are scarce. Computational fluid dynamics (CFD)–discrete element model (DEM) numerical simulation may be used to predict such a complex phenomenon and therefore establish a proper design and optimization model for comminution systems. They may also be used to predict attrition in systems where particle attrition is significant. Therefore, empirical comminution functions (which are applicable for any attrition/comminution process), such as: strength distribution, selection, equivalence, breakage, and fatigue, have been integrated into the three-dimensional CFD–DEM simulation tool. The main drawback of such a design tool is the long computational time required owing to the large number of particles and the minute time-step required to maintain a steady solution while simulating the flow of particulate materials with very fine particles.The present study developed several methods to accelerate CFD–DEM simulations: reducing the number of operations carried out at the single-particle level, constructing a DEM grid detached from the CFD grid enabling a no binary search, generating a sub-grid within the DEM grid to enable a no binary search for fine particles, and increasing the computational time-step and eliminating the finest particles in the simulation while still tracking their contribution to the process.The total speedup of the simulation process without the elimination of the finest particles was a factor of about 17. The elimination of the finest particles gave additional speedup of a factor of at least 18. Therefore, the simulation of a grinding process can run at least 300 times faster than the conventional method in which a standard no binary search is employed and the smallest particles are tracked.  相似文献   

10.
Discrete and continuum modelling of excavator bucket filling   总被引:1,自引:0,他引:1  
Two-dimensional discrete and continuum modelling of excavator bucket filling is presented. The discrete element method (DEM) is used for the discrete modelling and the material-point method (MPM) for continuum modelling. MPM is a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire bucket filling process due to large displacements and distortions of the mesh. The use of a meshless method overcomes this problem. DEM and MPM simulations (plane strain) of bucket filling are compared to two-dimensional experimental results. Cohesionless corn grains were used as material and the simulated force acting on the bucket and flow patterns were compared with experimental results. The corn macro (continuum) and micro (DEM) properties were obtained from shear and oedometer tests. As part of the MPM simulations, both the classic (nonpolar) and the Cosserat (polar) continuums were used. Results show that the nonpolar continuum is the most accurate in predicting the bucket force while the polar and DEM methods predict lower forces. The DEM model does not accurately predict the material flow during filling, while the polar and nonpolar methods are more accurate. Different flow zones develop during filling and it is shown that DEM, the polar and the nonpolar methods can accurately predict the position and orientation of these different flow zones.  相似文献   

11.
Coarse graining is an important ingredient in many multi-scale continuum–discrete solvers such as CFD–DEM (computational fluid dynamics–discrete element method) solvers for dense particle-laden flows. Although CFD–DEM solvers have become a mature technique that is widely used in multiphase flow research and industrial flow simulations, a flexible and easy-to-implement coarse graining algorithm that can work with CFD solvers of arbitrary meshes is still lacking. In this work, we proposed a new coarse graining algorithm for continuum–discrete solvers for dense particle-laden flows based on solving a transient diffusion equation. Via theoretical analysis we demonstrated that the proposed method is equivalent to the statistical kernel method with a Gaussian kernel, but the current method is much more straightforward to implement in CFD–DEM solvers. A priori numerical tests were performed to obtain the solid volume fraction fields based on given particle distributions, the results obtained by using the proposed algorithm were compared with those from other coarse graining methods in the literature (e.g., the particle centroid method, the divided particle volume method, and the two-grid formulation). The numerical tests demonstrated that the proposed coarse graining procedure based on solving diffusion equations is theoretically sound, easy to implement and parallelize in general CFD solvers, and has improved mesh-convergence characteristics compared with existing coarse graining methods. The diffusion-based coarse graining method has been implemented into a CFD–DEM solver, the results of which are presented in a separate work.  相似文献   

12.
李锡夔  万柯 《力学学报》2010,42(5):889-900
本文提出了耦合细尺度上基于离散颗粒集合体模型的离散单元法(DEM)和粗尺度上基于Cosserat连续体模型的有限元法(FEM)的连接尺度方法(BSM)以研究颗粒材料的力学行为。采用Cosserat连续体模型和FEM模拟的粗尺度域覆盖全域,而采用离散颗粒集合体模型的DEM模拟的细尺度域仅限于需特别关注材料微结构演变和非连续变形行为的局部区域。对这两个区域间的界面提出了适当的界面条件及其实施方案。通过采用适当的连接尺度投影算子,空间离散的粗、细尺度耦合系统多尺度运动方程具有解耦和允许分别求解、因而也允许分别采用不同时间步长对粗、细尺度计算的特点,可极大地提高BSM的计算效率。文中二维地基数值算例结果说明了所陈述方法的可应用性,以及相对基于Cosserat连续体模型的FEM和基于离散颗粒集合体模型的DEM的优越性。   相似文献   

13.
《力学学报》2010,42(5):889
本文提出了耦合细尺度上基于离散颗粒集合体模型的离散单元法(DEM)和粗尺度上基于Cosserat连续体模型的有限元法(FEM)的连接尺度方法(BSM)以研究颗粒材料的力学行为。采用Cosserat连续体模型和FEM模拟的粗尺度域覆盖全域,而采用离散颗粒集合体模型的DEM模拟的细尺度域仅限于需特别关注材料微结构演变和非连续变形行为的局部区域。对这两个区域间的界面提出了适当的界面条件及其实施方案。通过采用适当的连接尺度投影算子,空间离散的粗、细尺度耦合系统多尺度运动方程具有解耦和允许分别求解、因而也允许分别采用不同时间步长对粗、细尺度计算的特点,可极大地提高BSM的计算效率。文中二维地基数值算例结果说明了所陈述方法的可应用性,以及相对基于Cosserat连续体模型的FEM和基于离散颗粒集合体模型的DEM的优越性。  相似文献   

14.
In this study, discrete element method (DEM) was employed to simulate the movement of non-cohesive mono-dispersed particles in a V-blender along with particle-particle and particle-boundary interactions. To validate the model, DEM results were successfully compared to positron emission particle tracking (PEPT) data reported in literature. The validated model was then utilized to explore the effects of rotational speed and fill level on circulation intensity and axial dispersion coefficient of non-cohesive particles in the V-blender. The results showed that the circulation intensity increased with an increase in the rotational speed from 15 to 60 rpm. As the fill level increased from 20% to 46%, the circulation intensity decreased, reached its minimum value at a fill level of 34% for all rotational speeds, and did not change significantly at fill levels greater than 34%. The DEM results also revealed that the axial dispersion coefficient of particles in the V-blender was a linear function of the rotational speed. These trends were in good agreement with the experimentallv determined values reported bv previous researchers.  相似文献   

15.
In the present study, the flow of bulk materials is characterised as a non-Newtonian fluid and modelled using the lattice Boltzmann method. A power law and a Bingham model is implemented in the LBM, which is hydrodynamically coupled to the discrete element method (DEM) for structural interaction. The performance of both non-Newtonian models is assessed, both qualitatively and quantitatively, in benchmark problems. The validated, non-Newtonian LBM–DEM framework is then applied to the geometry of a cylindrical Couette rheometer to numerically determine the constitutive response of a sample of Leighton Buzzard sand. The numerical results, which employ the power law, are compared with experimental data, and a number of other synthetic soil samples are defined using the presented process of numerical rheometry. Finally, the numerical stress–strain rate response of the synthetic soil samples is interpreted within the context of a regularised Bingham model, and the similarities discussed.  相似文献   

16.
The discrete element method (DEM) is widely seen as one of the more accurate, albeit more computationally demanding approaches for terramechanics modelling. Part of its appeal is its explicit consideration of gravity in the formulation, making it easily applicable to the study of soil in reduced gravity environments. The parallel particles (P2) approach to terramechanics modelling is an alternate approach to traditional DEM that is computationally more efficient at the cost of some assumptions. Thus far, this method has mostly been applied to soil excavation maneuvers. The goal of this work is to implement and validate the P2 approach on a single wheel driving over soil in order to evaluate the applicability of the method to the study of wheel-soil interaction. In particular, the work studies how well the method captures the effect of gravity on wheel-soil behaviour. This was done by building a model and first tuning numerical simulation parameters to determine the critical simulation frequency required for stable simulation behaviour and then tuning the physical simulation parameters to obtain physically accurate results. The former were tuned via the convergence of particle settling energy plots for various frequencies. The latter were tuned via comparison to drawbar pull and wheel sinkage data collected from experiments carried out on a single wheel testbed with a martian soil simulant in a reduced gravity environment. Sensitivity of the simulation to model parameters was also analyzed. Simulations produced promising data when compared to experiments as far as predicting experimentally observable trends in drawbar pull and sinkage, but also showed limitations in predicting the exact numerical values of the measured forces.  相似文献   

17.
Numerical and experimental direct shear tests for coarse-grained soils   总被引:3,自引:0,他引:3  
The presence of particles larger than the permissible dimensions of conventional laboratory specimens causes difficulty in the determination of shear strength of coarse-grained soils. In this research, the influence of particle size on shear strength of coarse-grained soils was investigated by resorting to experimental tests in different scale and numerical simulations based on discrete element method (DEM). Experimental tests on such soil specimens were based on using the techniques designated as "parallel" and "scalping" to prepare gradation of samples in view of the limitation of laboratory specimen size. As a second approach, the direct shear test was numerically simulated on assemblies of elliptical particles. The behaviors of samples under experimental and numerical tests are presented and compared, indicating that the modification of sample gradation has a significant influence on the mechanical properties of coarse-grained soils. It is noted that the shear strengths of samples produced by the scalping method are higher than samples by the parallel method. The scalping method for preparing specimens for direct shear test is therefore recommended. The micromechanical behavior of assemblies under direct shear test is also discussed and the effects of stress level on sample behavior are investigated.  相似文献   

18.
A neural network particle finding algorithm and a new four-frame predictive tracking algorithm are proposed for three-dimensional Lagrangian particle tracking (LPT). A quantitative comparison of these and other algorithms commonly used in three-dimensional LPT is presented. Weighted averaging, one-dimensional and two-dimensional Gaussian fitting, and the neural network scheme are considered for determining particle centers in digital camera images. When the signal to noise ratio is high, the one-dimensional Gaussian estimation scheme is shown to achieve a good combination of accuracy and efficiency, while the neural network approach provides greater accuracy when the images are noisy. The effect of camera placement on both the yield and accuracy of three-dimensional particle positions is investigated, and it is shown that at least one camera must be positioned at a large angle with respect to the other cameras to minimize errors. Finally, the problem of tracking particles in time is studied. The nearest neighbor algorithm is compared with a three-frame predictive algorithm and two four-frame algorithms. These four algorithms are applied to particle tracks generated by direct numerical simulation both with and without a method to resolve tracking conflicts. The new four-frame predictive algorithm with no conflict resolution is shown to give the best performance. Finally, the best algorithms are verified to work in a real experimental environment.  相似文献   

19.
We applied the discrete element method (DEM) of simulation modified by an enlarged particle model to simulate bead motion in a large bead mill. The stainless-steel bead mill has inner diameter of 102 mm and mill length of 198 mm. The bead diameter and filling ratio were fixed respectively at 0.5 mm and 85%. The agitator rotational speed was changed from 1863 to 3261 rpm. The bead motion was monitored experimentally using a high-speed video camera through a transparent mill body. For the simulation, enlarged particle sizes were set as 3-6 mm in diameter. With the DEM modified by the enlarged particle model, the motion of enlarged particles in a mill was simulated.The velocity data of the simulated enlarged particles were compared with those obtained in the experiment. The simulated velocity of the enlarged particles depends on the virtual frictional coefficient in the DEM model. The optimized value of the virtual frictional coefficient can be determined by considering the accumulated mean value. Results show that the velocity of the enlarged particles simulated increases with an increase in the optimum virtual frictional coefficient, but the simulated velocity agrees well with that determined experimentally by optimizing the virtual frictional coefficient in the simulation. The computing time in the simulation decreases with increased particle size.  相似文献   

20.
The lattice Boltzmann method (LBM) for simulating fluid phases was coupled with the discrete element method (DEM) for studying solid phases to formulate a novel solver for fast discrete particle simulation (DPS) of particle–fluid flows. The fluid hydrodynamics was obtained by solving LBM equations instead of solving the Navier–Stokes equation by the finite volume method (FVM). Interparticle and particle–wall collisions were determined by DEM. The new DPS solver was validated by simulating a three-dimensional gas–solid bubbling fluidized bed. The new solver was found to yield results faster than its FVM–DEM counterpart, with the increase in the domain-averaged gas volume fraction. Additionally, the scalability of the LBM–DEM DPS solver was superior to that of the FVM–DEM DPS solver in parallel computing. Thus, the LBM–DEM DPS solver is highly suitable for use in simulating dilute and large-scale particle–fluid flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号