首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A subset C?G of a group G is called k-centerpole if for each k-coloring of G there is an infinite monochromatic subset G, which is symmetric with respect to a point c??C in the sense that S=cS ?1 c. By c k (G) we denote the smallest cardinality c k (G) of a k-centerpole subset in G. We prove that c k (G)=c k (? m ) if G is an abelian group of free rank m??k. Also we prove that c 1(? n+1)=1, c 2(? n+2)=3, c 3(? n+3)=6, 8??c 4(? n+4)??c 4(?4)=12 for all n????, and ${\frac{1}{2}(k^{2}+3k-4)\le c_{k}(\mathbb{Z}^{n})\le2^{k}-1-\max_{s\le k-2}\binom {k-1}{s-1}}$ for all n??k??4.  相似文献   

2.
In this paper, we consider dependent random variables X k , k=1,2,?? with supports on [?b k ,??), respectively, where the b k ??0 are some finite constants. We derive asymptotic results on the tail probabilities of the quantities $S_{n}=\sum_{k=1}^{n} X_{k}$ , X (n)=max?1??k??n X k and S (n)=max?1??k??n S k , n??1 in the case where the random variables are dependent with heavy-tailed (subexponential) distributions, which substantially generalize the results of Ko and Tang (J. Appl. Probab. 45, 85?C94, 2008).  相似文献   

3.
Let T g : [?1, 1] ?? [?1, 1] be the Feigenbaum map. It is well known that T g has a Cantor-type attractor F and a unique invariant measure ??0 supported on F. The corresponding unitary operator (U g ??)(x) = ??(g(x)) has pure point spectrum consisting of eigenvalues ?? n,r , n ?? 1, 0 ?? r ?? 2 n?1 ? 1 with eigenfunctions e r (n) (x). Suppose that f ?? C 1([?1, 1]), f?? is absolutely continuous on [?1, 1] and f?? ?? L p ([?1, 1], d??0), p > 1. Consider the sum of the amplitudes of the spectral measure of f: $$ Sn(f): = \sum\limits_{r = 0}^{2^n - 1} {|\rho _r^{(n)} |^2 ,\rho _r^{(n)} = \int\limits_{ - 1}^1 {f(x)\overline {e_r^{(n)} (x)} d\mu _o } } (x). $$ Using the thermodynamic formalism for T g we prove that S n (f) ?? 2?n q n , as n ?? ??, where the constant q ?? (0, 1) does not depend on f.  相似文献   

4.
Filippov??s theorem implies that, given an absolutely continuous function y: [t 0; T] ?? ? d and a set-valued map F(t, x) measurable in t and l(t)-Lipschitz in x, for any initial condition x 0, there exists a solution x(·) to the differential inclusion x??(t) ?? F(t, x(t)) starting from x 0 at the time t 0 and satisfying the estimation $$\left| {x(t) - y(t)} \right| \leqslant r(t) = \left| {x_0 - y(t_0 )} \right|e^{\int_{t_0 }^t {l(s)ds} } + \int_{t_0 }^t \gamma (s)e^{\int_s^t {l(\tau )d\tau } } ds,$$ where the function ??(·) is the estimation of dist(y??(t), F(t, y(t))) ?? ??(t). Setting P(t) = {x ?? ? n : |x ?y(t)| ?? r(t)}, we may formulate the conclusion in Filippov??s theorem as x(t) ?? P(t). We calculate the contingent derivative DP(t, x)(1) and verify the tangential condition F(t, x) ?? DP(t, x)(1) ?? ?. It allows to obtain Filippov??s theorem from a viability result for tubes.  相似文献   

5.
In this paper, the authors give the boundedness of the commutator [b, ????,?? ] from the homogeneous Sobolev space $\dot L_\gamma ^p \left( {\mathbb{R}^n } \right)$ to the Lebesgue space L p (? n ) for 1 < p < ??, where ????,?? denotes the Marcinkiewicz integral with rough hypersingular kernel defined by $\mu _{\Omega ,\gamma } f\left( x \right) = \left( {\int_0^\infty {\left| {\int_{\left| {x - y} \right| \leqslant t} {\frac{{\Omega \left( {x - y} \right)}} {{\left| {x - y} \right|^{n - 1} }}f\left( y \right)dy} } \right|^2 \frac{{dt}} {{t^{3 + 2\gamma } }}} } \right)^{\frac{1} {2}} ,$ , with ?? ?? L 1(S n?1) for $0 < \gamma < min\left\{ {\frac{n} {2},\frac{n} {p}} \right\}$ or ?? ?? L(log+ L) ?? (S n?1) for $\left| {1 - \frac{2} {p}} \right| < \beta < 1\left( {0 < \gamma < \frac{n} {2}} \right)$ , respectively.  相似文献   

6.
Two-variable functions f(x, y) from the class L 2 = L 2((a, b) × (c, d); p(x)q(y)) with the weight p(x)q(y) and the norm $$\left\| f \right\| = \sqrt {\int\limits_a^b {\int\limits_c^d {p(x)q(x)f^2 (x,y)dxdy} } }$$ are approximated by an orthonormal system of orthogonal P n (x)Q n (y), n, m = 0, 1, ..., with weights p(x) and q(y). Let $$E_N (f) = \mathop {\inf }\limits_{P_N } \left\| {f - P_N } \right\|$$ denote the best approximation of f ?? L 2 by algebraic polynomials of the form $$\begin{array}{*{20}c} {P_N (x,y) = \sum\limits_{0 < n,m < N} {a_{m,n} x^n y^m ,} } \\ {P_1 (x,y) = const.} \\ \end{array}$$ . Consider a double Fourier series of f ?? L 2 in the polynomials P n (x)Q m (y), n, m = 0, 1, ..., and its ??hyperbolic?? partial sums $$\begin{array}{*{20}c} {S_1 (f;x,y) = c_{0,0} (f)P_o (x)Q_o (y),} \\ {S_N (f;x,y) = \sum\limits_{0 < n,m < N} {c_{n,m} (f)P_n (x)Q_m (y), N = 2,3, \ldots .} } \\ \end{array}$$ A generalized shift operator Fh and a kth-order generalized modulus of continuity ?? k (A, h) of a function f ?? L 2 are used to prove the following sharp estimate for the convergence rate of the approximation: $\begin{gathered} E_N (f) \leqslant (1 - (1 - h)^{2\sqrt N } )^{ - k} \Omega _k (f;h),h \in (0,1), \hfill \\ N = 4,5,...;k = 1,2,... \hfill \\ \end{gathered} $ . Moreover, for every fixed N = 4, 9, 16, ..., the constant on the right-hand side of this inequality is cannot be reduced.  相似文献   

7.
Let $ {f_{\gamma }}(x) = \sum\nolimits_{{k = 0}}^{\infty } {{{{T_k (x)}} \left/ {{{{\left( \gamma \right)}_k}}} \right.}} $ , where (??) k =??(??+1) ? (??+k?1) and T k (x)=cos (k arccos x) are Padé?CChebyshev polynomials. For such functions and their Padé?CChebyshev approximations $ \pi_{n,m}^{ch}\left( {x;{f_{\gamma }}} \right) $ , we find the asymptotics of decreasing the difference $ {f_{\gamma }}(x) - \pi_{n,m}^{ch}\left( {x;{f_{\gamma }}} \right) $ in the case where 0 ? m ? m(n), m(n) = o (n), as n???? for all x ?? [?1, 1]. Particularly, we determine that, under the same assumption, the Padé?CChebyshev approximations converge to f ?? uniformly on the segment [?1, 1] with the asymptotically best rate.  相似文献   

8.
Let (M, g) be a closed connected orientable Riemannian manifold of dimension n????2. Let ??:?=??? 0?+??? * ?? denote a twisted symplectic form on T * M, where ${\sigma\in\Omega^{2}(M)}$ is a closed 2-form and ?? 0 is the canonical symplectic structure ${dp\wedge dq}$ on T * M. Suppose that ?? is weakly exact and its pullback to the universal cover ${\widetilde{M}}$ admits a bounded primitive. Let ${H:T^{*}M\rightarrow\mathbb{R}}$ be a Hamiltonian of the form ${(q,p)\mapsto\frac{1}{2}\left|p\right|^{2}+U(q)}$ for ${U\in C^{\infty}(M,\mathbb{R})}$ . Let ?? k :?=?H ?1(k), and suppose that k?>?c(g, ??, U), where c(g, ??, U) denotes the Ma?é critical value. In this paper we compute the Rabinowitz Floer homology of such hypersurfaces. Under the stronger condition that k?>?c 0(g, ??, U), where c 0(g, ??, U) denotes the strict Ma?é critical value, Abbondandolo and Schwarz (J Topol Anal 1:307?C405, 2009) recently computed the Rabinowitz Floer homology of such hypersurfaces, by means of a short exact sequence of chain complexes involving the Rabinowitz Floer chain complex and the Morse (co)chain complex associated to the free time action functional. We extend their results to the weaker case k?>?c(g, ??, U), thus covering cases where ?? is not exact. As a consequence, we deduce that the hypersurface ?? k is never (stably) displaceable for any k?>?c(g, ??, U). This removes the hypothesis of negative curvature in Cieliebak et?al. (Geom Topol 14:1765?C1870, 2010, Theorem 1.3) and thus answers a conjecture of Cieliebak, Frauenfelder and Paternain raised in Cieliebak et?al. (2010). Moreover, following Albers and Frauenfelder (2009; J Topol Anal 2:77?C98, 2010) we prove that for k?>?c(g, ??, U), any ${\psi\in\mbox{Ham}_{c}(T^{*}M,\omega)}$ has a leaf-wise intersection point in ?? k , and that if in addition ${\dim\, H_{*}(\Lambda M;\mathbb{Z}_{2})=\infty}$ , dim M????2, and the metric g is chosen generically, then for a generic ${\psi\in\mbox{Ham}_{c}(T^{*}M,\omega)}$ there exist infinitely many such leaf-wise intersection points.  相似文献   

9.
For any Pisot number β it is known that the set F (β)={t:lim n→∞‖tβ n‖= 0} is countable,where a is the distance between a real number a and the set of integers.In this paper it is proved that every member in this set is of the form cβ n,where ‖n‖ is a nonnegative integer and c is determined by a linear system of equations.Furthermore,for some self-similar measures μ associated with β,the limit at infinity of the Fourier transforms lim n→∞μ(tβ n)≠0 if and only if t is in a certain subset of F (β).This generalizes a similar result of Huang and Strichartz.  相似文献   

10.
Let an,n 1 be a sequence of independent standard normal random variables.Consider the random trigonometric polynomial Tn(θ)=∑nj=1 aj cos(jθ),0≤θ≤2π and let Nn be the number of real roots of Tn(θ) in(0,2π).In this paper it is proved that limn →∞ Var(Nn)/n=c0,where 0相似文献   

11.
Let ${\mathcal{L}f(x)=-\frac{1}{\omega}\sum_{i,j} \partial_i(a_{i,j}(\cdot)\partial_jf)(x)+V(x)f(x)}$ with the non-negative potential V belonging to reverse H?lder class with respect to the measure ??(x)dx, where ??(x) satisfies the A 2 condition of Muckenhoupt and a i,j (x) is a real symmetric matrix satisfying ${\lambda^{-1}\omega(x)|\xi|^2\le \sum^n_{i,j=1}a_{i,j}(x)\xi_i\xi_j\le\lambda\omega(x)|\xi|^2. }$ We obtain some estimates for ${V^{\alpha}\mathcal{L}^{-\alpha}}$ on the weighted L p spaces and we study the weighted L p boundedness of the commutator ${[b, V^{\alpha} \mathcal{L}^{-\alpha}]}$ when ${b\in BMO_\omega}$ and 0?<??? ?? 1.  相似文献   

12.
In this paper, we study integral operators of the form Tαf(x)=∫Rn|x-A1y|-α1 ··· |x-Amy|-αmf(y)dy,where Ai are certain invertible matrices, αi 0, 1 ≤ i ≤ m, α1 + ··· + αm = n-α, 0 ≤α n. For 1/q = 1/p-α/n , we obtain the Lp (Rn, wp)-Lq(Rn, wq) boundedness for weights w in A(p, q) satisfying that there exists c 0 such that w(Aix) ≤ cw(x), a.e. x ∈ Rn , 1 ≤ i ≤ m.Moreover, we obtain theappropriate weighted BMO and weak type estimates for certain weights satisfying the above inequality. We also give a Coifman type estimate for these operators.  相似文献   

13.
A partial orthomorphism of ${\mathbb{Z}_{n}}$ is an injective map ${\sigma : S \rightarrow \mathbb{Z}_{n}}$ such that ${S \subseteq \mathbb{Z}_{n}}$ and ??(i)?Ci ? ??(j)? j (mod n) for distinct ${i, j \in S}$ . We say ?? has deficit d if ${|S| = n - d}$ . Let ??(n, d) be the number of partial orthomorphisms of ${\mathbb{Z}_{n}}$ of deficit d. Let ??(n, d) be the number of partial orthomorphisms ?? of ${\mathbb{Z}_n}$ of deficit d such that ??(i) ? {0, i} for all ${i \in S}$ . Then ??(n, d) =???(n, d)n 2/d 2 when ${1\,\leqslant\,d < n}$ . Let R k, n be the number of reduced k ×?n Latin rectangles. We show that $$R_{k, n} \equiv \chi (p, n - p)\frac{(n - p)!(n - p - 1)!^{2}}{(n - k)!}R_{k-p,\,n-p}\,\,\,\,(\rm {mod}\,p)$$ when p is a prime and ${n\,\geqslant\,k\,\geqslant\,p + 1}$ . In particular, this enables us to calculate some previously unknown congruences for R n, n . We also develop techniques for computing ??(n, d) exactly. We show that for each a there exists??? a such that, on each congruence class modulo??? a , ??(n, n-a) is determined by a polynomial of degree 2a in n. We give these polynomials for ${1\,\leqslant\,a\,\leqslant 6}$ , and find an asymptotic formula for ??(n, n-a) as n ?? ??, for arbitrary fixed a.  相似文献   

14.
Let L be a linear operator in L 2(? n ) and generate an analytic semigroup {e ?tL } t??0 with kernels satisfying an upper bound of Poisson type, whose decay is measured by ??(L)??(0,??]. Let ?? on (0,??) be of upper type 1 and of critical lower type $\widetilde{p}_{0}(\omega)\in(n/(n+\theta(L)),1]$ and ??(t)=t ?1/?? ?1(t ?1) for t??(0,??). In this paper, the authors first introduce the VMO-type space VMO ??,L (? n ) and the tent space $T^{\infty}_{\omega,\mathrm{v}}({\mathbb{R}}^{n+1}_{+})$ and characterize the space VMO ??,L (? n ) via the space $T^{\infty}_{\omega,\mathrm{v}}({{\mathbb{R}}}^{n+1}_{+})$ . Let $\widetilde{T}_{\omega}({{\mathbb{R}}}^{n+1}_{+})$ be the Banach completion of the tent space $T_{\omega}({\mathbb{R}}^{n+1}_{+})$ . The authors then prove that $\widetilde{T}_{\omega}({\mathbb{R}}^{n+1}_{+})$ is the dual space of $T^{\infty}_{\omega,\mathrm{v}}({\mathbb{R}}^{n+1}_{+})$ . As an application of this, the authors finally show that the dual space of $\mathrm{VMO}_{\rho,L^{\ast}}({\mathbb{R}}^{n})$ is the space B ??,L (? n ), where L * denotes the adjoint operator of L in L 2(? n ) and B ??,L (? n ) the Banach completion of the Orlicz-Hardy space H ??,L (? n ). These results generalize the known recent results by particularly taking ??(t)=t for t??(0,??).  相似文献   

15.
Оператор Канторович а дляf∈L p(I), I=[0,1], определяе тся соотношением $$P_n (f,x) = (n + 1)\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} x^k (1 - x)^{n - 1} \int\limits_{I_k } {f(t)dt,} $$ гдеI k=[k/(n}+1),(k+1)/(n+ 1)],n∈N. Доказывается, что есл ир>1 иfW p 2 (I), т.е.f абсол ютно непрерывна наI иf″∈L p(I), то $$\left\| {P_n f - f} \right\|_p = O(n^{ - 1} ).$$ Далее, установлено, чт о еслиfL p(I),p>1 и ∥P n f-fр=О(n ?1), тоf∈S, гдеS={ff аб-солютно непрерывна наI, x(1?x)f′(x)=∝ 0 x h(t)dt, гдеh∈L p(I) и ∝ 0 1 h(t)dt=0}. Если жеf∈Lp(I),p>1, то из условия ∥P n(f)?fpL=o(n?1) вытекает, чтоf постоянна почти всюду.  相似文献   

16.
We propose an answer to a question raised by F. Burstall: Is there any interesting theory of isothermic submanifolds of ? n of dimension greater than two? We call an n-immersion f(x) in ? m isothermic k if the normal bundle of f is flat and x is a line of curvature coordinate system such that its induced metric is of the form $\sum_{i=1}^{n} g_{ii}\,\mathrm{d} x_{i}^{2}$ with $\sum_{i=1}^{n} \epsilon_{i} g_{ii}=0$ , where ?? i =1 for 1??i??n?k and ?? i =?1 for n?k<i??n. A smooth map (f 1,??,f n ) from an open subset ${\mathcal{O}}$ of ? n to the space of m×n matrices is called an n-tuple of isothermic k n-submanifolds in ? m if each f i is an isothermic k immersion, $(f_{i})_{x_{j}}$ is parallel to $(f_{1})_{x_{j}}$ for all 1??i,j??n, and there exists an orthonormal frame (e 1,??,e n ) and a GL(n)-valued map (a ij ) such that $\mathrm{d}f_{i}= \sum_{j=1}^{n} a_{ij} e_{j}\,\mathrm {d} x_{j}$ for 1??i??n. Isothermic1 surfaces in ?3 are the classical isothermic surfaces in ?3. Isothermic k submanifolds in ? m are invariant under conformal transformations. We show that the equation for n-tuples of isothermic k n-submanifolds in ? m is the $\frac{O(m+n-k,k)}{O(m)\times O(n-k,k)}$ -system, which is an integrable system. Methods from soliton theory can therefore be used to construct Christoffel, Ribaucour, and Lie transforms, and to describe the moduli spaces of these geometric objects and their loop group symmetries.  相似文献   

17.
We characterize all the real numbers a, b, c and 1 ?? p, q, r < ?? such that the weighted Sobolev space $$W_{\{ a,b\} }^{\{ q,q\} }({R^N}\backslash \{ 0\} ): = \{ u \in L_{loc}^1({R^N}\backslash \{ 0\} ):{\left| x \right|^{a/q}} \in {L^q}({R^{N),}}{\left| x \right|^{b/p}}\nabla u \in {({L^p}({R^N}))^N}\} $$ is continuously embedded into $${L^r}({R^N};{\left| x \right|^c}dx): = \{ u \in L_{loc}^1({R^N}\backslash \{ 0\} ):{\left| x \right|^{c/r}}u \in {L^r}({R^N})\} $$ with norm ??·?? c,r . It turns out that, except when N ?? 2 and a = c = b ? p = ?N, such an embedding is equivalent to the multiplicative inequality $${\left\| u \right\|_{c,r}} \le C\left\| {\nabla u} \right\|_{b,p}^\theta \left\| u \right\|_{a,q}^{1 - \theta }$$ for some suitable ?? ?? [0, 1], which is often but not always unique. If a, b, c > ?N, then C 0 ?? (? N ) ? W {a,b} (q,p) (? N {0}) ?? L r (? N ; |x| c dx) and such inequalities for u ?? C 0 ?? (? N ) are the well-known Caffarelli-Kohn-Nirenberg inequalities; but their generalization to W {a,b} (q,p) (? N {0}) cannot be proved by a denseness argument. Without the assumption a, b, c > ?N, the inequalities are essentially new, even when u ?? C 0 ?? (? N {0}), although a few special cases are known, most notably the Hardy-type inequalities when p = q. In a different direction, the embedding theorem easily yields a generalization when the weights |x| a , |x| b and |x| c are replaced with more general weights w a ,w b and w c , respectively, having multiple power-like singularities at finite distance and at infinity.  相似文献   

18.
In this paper, we consider the lattice Schr?dinger equations $$i\dot q_n (t) = \tan \pi (n\alpha + x)q_n (t) + \varepsilon \left( {q_{n + 1} (t) + q_{n - 1} (t)} \right) + \delta v_n (t)\left| {q_n (t)} \right|^{2\tau - 2} q_n (t),$$ with ?? satisfying a certain Diophantine condition, x ?? ?/?, and ?? = 1 or 2, where v n (t) is a spatial localized real bounded potential satisfying |v n (t)| ? Ce???|n|. We prove that the growth of H 1 norm of the solution {q n (t)}n??? is at most logarithmic if the initial data {q n (0)} n??? ?? H 1 for ? sufficiently small and a.e. x fixed. Furthermore, suppose that the linear equation has a time quasi-periodic potential, i.e., $$i\dot q_n (t) = \tan \pi (n\alpha + x)q_n (t) + \varepsilon \left( {q_{n + 1} (t) + q_{n - 1} (t)} \right) + \delta v_n \left( {\theta ^0 + t\omega } \right)q_n \left( t \right).$$ Then the linear equation can be reduced to an autonomous equation for a.e. x and most values of the frequency vectors ?? if ? and ?? are sufficiently small.  相似文献   

19.
We study L p -integrability (1<p<??) of a sum ?? of trigonometric series under the assumptions that the sequence of coefficients of ?? belongs to the class $\overline{\mathrm{GM}}_{\theta}^{r}$ . Then we discuss the relations between the properties of ?? and the properties of the sequence (?? n )??GM(??,r), and deduce an estimate for modulus of continuity of ?? in L p norm.  相似文献   

20.
Let k be an even positive integer and f a holomorphic Hecke eigenform of weight k with respect to the full modular group SL(2, ?). Let c n be the nth coefficient of the symmetric square L-function associated to f. We study the uniform bound for the sum C(x) = Σ nx c n with respect to the weight k and establish that $$ C(x) = \sum\limits_{n \leqq x} {c_n } \ll x^{\tfrac{3} {5}} (\log x)^{\tfrac{{22}} {5}} + k^{\tfrac{3} {2}} (\log x)^5 $$ . Other similar results are also established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号