首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This paper presents a study of the effect of a time-delayed feedback controller on the dynamics of a Microelectromechanical systems (MEMS) capacitor actuated as a resonator by DC and AC voltage loads. A linearization analysis is conducted to determine the stability chart of the linearized system equations as a function of the time delay period and the controller gain. Then the method of multiple-scales is applied to determine the response and stability of the system for small vibration amplitude and voltage loads. It is shown that negative time-delay feedback control gain can lead to unstable responses, even if AC voltage is relatively small compared to the DC voltage. On the other hand, positive time delay can considerably strengthen the system stability even in fractal domains. We also show how the controller can be used to control damping in MEMS, increasing or decreasing, by tuning the gain amplitude and delay period. Agreements among the results of a shooting technique, long-time integration, basin of attraction analysis with the perturbation method are achieved.  相似文献   

2.
Huang  Ying-Jeh  Wang  Yuan-Jay 《Nonlinear dynamics》2002,30(3):223-241
In this paper, the analysis of the steady-state response of the slidingmode control system is presented. The nonlinearity of the switching termin the control law is approximately characterized by using itsequivalent describing function. The parasitic dynamics is modeled as afirst-order lag transfer function, and a possible transport delay isconsidered. Subsequently, a frequency domain method is used for theprediction of limit cycles. The stability-equation method together withthe parameter plane method is proposed to predict graphically limitcycles in the system coefficient plane. Four common types of switchingfunctions are investigated. This analysis further provides an approachof switching control gain selection for suppressing the limit cycle inthe sliding mode.  相似文献   

3.
By a gel we mean a system of crosslinked polymer chains mixed together with a low molecular weight liquid. The polymer and liquid components mix in definite proportions as determined primarily by entropic and enthalpic effects. Swollen gels in equilibrium with a surrounding fluid bath in the absence of mechanical load are often described by a generalized Flory-Huggins equation. In this paper we consider the connection between such a treatment and the broader hyperelastic theory that treats the effect of mechanical loading in deforming the gel. A change in the mechanical loading will generally alter the proportion of liquid in the mixture, leading to either fluid loss (swelling reduction) or fluid gain (swelling increase). In such a case the gel reestablishes equilibrium only when the relative motion of the liquid through the polymer has ceased and processes have come to rest. Such processes are inherently dissipative. Our objective is to study how such reestablished equilibria depend upon mechanical load. For quasi-static loadings that give fluid gain, we then consider a situation in which the amount of available fluid is limited. In this case, increasing quasi-static loading may reach a point at which no additional fluid is available for uptake into the gel system. The associated equilibrium then transitions from a state of liquid saturation to a state in which the gel is no longer saturated. We first consider this quasi-static transition in the context of homogeneous deformation where an appropriate hyperelastic analysis shows that the equilibrium mechanical response is inherently stiffer after loss of saturation. We then consider such a transition in the context of inhomogeneous deformation by studying the boundary value problem of an everted tube subject to an axial load. Loss of saturation again leads to an inherently stiffer quasi-static response.  相似文献   

4.
A novel approach for implementing an active nonlinear vibration absorber is presented. The absorber, which is built in electronic circuitry, takes advantage of the saturation phenomenon that occurs when two natural frequencies of a system with quadratic nonlinearities are in the ratio of two-to-one. When the system is excited at a frequency near the higher natural frequency, there is a small ceiling for the system response at the higher frequency and the rest of the input energy is channeled to the low-frequency mode.A working model of using saturation to suppress the vibrations of a rigid beam connected to a DC motor has been built. An electronic oscillator is built, and its frequency is set at one-half the frequency of the beam. The output from a sensor on the beam is multiplied by the output from the electronic oscillator and a suitable gain, and the result is used as the forcing term for the oscillator. At the same time, the output from the oscillator is squared and multiplied by a suitable gain, and that result is used as the input to the motor. The oscillator/actuator and the beam act as the two modes of a two-degree-of-freedom quadratically coupled system with a 2:1 autoparametric resonance. When the beam is excited by a harmonic force, its motion quickly becomes saturated, and most of the energy imparted to the beam by the harmonic force is transferred to the electronic circuit and from there to the actuator. Thus, the harmonic force is made to work against itself. As a result, the motion of the beam always remains small.  相似文献   

5.
This paper models the non-linear flexural response of laminates that have piecewise variation of lay-up in the planform, using finite element analysis. Attention is focused on the effects that thermal stresses have on the potential multiple shapes of a composite structure. Unsymmetric laminates may possess more than a single equilibrium configuration, and during the cool-down the solution thus bifurcates at a critical temperature. In static analyses, numerical solutions are often coaxed to converge into one or the other branch of the solution. A methodology to overcome this problem is presented. Such modelling is necessary to allow application of multistable composite within morphing aircraft structures as multistable composites could provide a viable solution for the realisation of shape-adaptable structures.  相似文献   

6.
This paper analyses the nonlinear transverse vibrations of a rotating, clamped-free, flexible disc coupled to a precompressed spring. This is representative of a large class of loadings in rotating disc systems such as air jet and electromagnetic excitation commonly used in experiments. Such a loading induces a simultaneous critical speed resonance and parametric instability. The disc is modelled as a Von Kármán plate, and the equations of motion are discretised by a Galerkin projection onto a pair of 1:1 internally resonant modes. The large amplitude wave motions and their stabilities are studied using the averaging method and via numerical continuation techniques. The analysis is carried out in a co-rotating as well as a ground-fixed frame. Numerical simulations are used to verify the above analyses. The response predicted by these analyses is substantially different from that arising from a critical speed resonance or of a parametric instability alone. As many as five equilibrium solutions can coexist at supercritical speed. Two distinct regimes of large amplitude response appear to exist depending on the relationship between the strength of the parametric excitation and the damping. The existence of these regimes underscores the subtle competition between critical speed resonance and parametric instability that is likely to be observed in experiments near critical speed in such systems.Contributed by Prof. A.K. Bajaj.  相似文献   

7.
The problem of controlling the vibration of a transversely excited cantilever beam with tip mass is analyzed within the framework of the Euler–Bernoulli beam theory. A sinusoidally varying transverse excitation is applied at the left end of the cantilever beam, while a payload is attached to the free end of the beam. An active control of the transverse vibration based on cubic velocity is studied. Here, cubic velocity feedback law is proposed as a devise to suppress the vibration of the system subjected to primary and subharmonic resonance conditions. Method of multiple scales as one of the perturbation technique is used to reduce the second-order temporal equation into a set of two first-order differential equations that govern the time variation of the amplitude and phase of the response. Then the stability and bifurcation of the system is investigated. Frequency–response curves are obtained numerically for primary and subharmonic resonance conditions for different values of controller gain. The numerical results portrayed that a significant amount of vibration reduction can be obtained actively by using a suitable value of controller gain. The response obtained using method of multiple scales is compared with those obtained by numerically solving the temporal equation of motion and are found to be in good agreement. Numerical simulation for amplitude is also obtained by integrating the equation of motion in the frequency range between 1 and 3. The developed results can be extensively used to suppress the vibration of a transversely excited cantilever beam with tip mass or similar systems actively.  相似文献   

8.
A weakly nonlinear oscillator is modeled by a differential equation. A superharmonic resonance system can have a saddle-node bifurcation, with a jumping transition from one state to another. To control the jumping phenomena and the unstable region of the nonlinear oscillator, a combination of feedback controllers is designed. Bifurcation control equations are derived by using the method of multiple scales. Furthermore, by performing numerical simulations and by comparing the responses of the uncontrolled system and the controlled system, we clarify that a good controller can be obtained by changing the feedback control gain. Also, it is found that the linear feedback gain can delay the occurrence of saddle-node bifurcations, while the nonlinear feedback gain can eliminate saddle-node bifurcations. Feasible ways of further research of saddle-node bifurcations are provided. Finally, we show that an appropriate nonlinear feedback control gain can suppress the amplitude of the steady-state response.  相似文献   

9.
A computational procedure is presented for evaluating the sensitivity coefficients of the thermomechanical response of welded structures. Uncoupled thermomechanical analysis, with transient thermal analysis and quasi-static mechanical analysis, is performed. A rate independent, small deformation thermo-elasto-plastic material model with temperature-dependent material properties is adopted in the study. The temperature field is assumed to be independent of the stresses and strains. The heat transfer equations emanating from a finite element semi-discretization are integrated using an implicit backward difference scheme to generate the time history of the temperatures. The mechanical response during welding is then calculated by solving a generalized plane strain problem. First- and second-order sensitivity coefficients of the thermal and mechanical response quantities (derivatives with respect to various thermomechanical parameters) are evaluated using a direct differentiation approach in conjunction with an automatic differentiation software facility. Numerical results are presented for a double fillet conventional welding of a stiffener and a base plate made of stainless steel AL-6XN material. Time histories of the response and sensitivity coefficients, and their spatial distributions at selected times are presented.  相似文献   

10.
This paper studies the stabilization to an inverted pendulum under a delayed proportional-derivative-acceleration (PDA) feedback, which can be used to understand human balance in quiet standing. The closed-loop system is described by a neutral delay differential equation (NDDE). The optimal feedback gains (OFGs) that make the exponential decaying rate maximized are determined when the characteristic equation of the closed-loop has a repeated real root with multiplicity 4. Such a property is called multiplicity-induced dominancy of time-delay systems, and has been discussed intensively by many authors for retarded delay differential equations (RDDEs). This paper shows that multiplicity-induced dominancy can be achieved in NDDEs. In addition, the OFGs are delay-dependent, and decrease sharply to small numbers correspondingly as the delay increases from zero and varies slowly with respect to moderate delays. Thus, the inverted pendulum can be well-stabilized with moderate delays and relatively small feedback gains. The result might be understandable that the elderly with obvious response delays can be well-stabilized with a delayed PDA feedback controller.  相似文献   

11.
Fractional Derivative Viscoelasticity at Large Deformations   总被引:1,自引:0,他引:1  
A time domain viscoelastic model for large three-dimensional responses underisothermal conditions is presented. Internal variables with fractional orderevolution equations are used to model the time dependent part of the response. By using fractional order rate laws, the characteristics of the timedependency of many polymeric materials can be described using relatively fewparameters. Moreover, here we take into account that polymeric materials are often used in applications where the small deformations approximation does nothold (e.g., suspensions, vibration isolators and rubber bushings). A numerical algorithm for the constitutive response is developed and implemented into a finite element code forstructural dynamics. The algorithm calculates the fractional derivatives by means of the Grünwald–Lubich approach.Analytical and numerical calculations of the constitutive response in the nonlinearregime are presented and compared. The dynamicstructural response of a viscoelastic bar as well as the quasi-static response of athick walled tube are computed, including both geometrically and materiallynonlinear effects. Moreover, it isshown that by applying relatively small load magnitudes, the responses ofthe linear viscoelastic model are recovered.  相似文献   

12.
In most of structural optimization approaches, finite element method (FEM) has been employed for structural response analysis and sensitivity calculation. However, the approaches generally suffer certain drawbacks. In shape optimization, cumbersome parameterization of design domain is required and time consuming remeshing task is also necessary. In topology optimization, design results are generally restricted on the initial design space and additional post-processing is required for communication with CAD systems. These drawbacks are due to the use of different mathematical languages in design or geometric modeling and numerical analysis: spline basis functions are used in design and geometric modeling whereas Lagrangian and Hermitian polynomials in analysis. Isogeometric analysis is a very attractive and promising alternative to overcome the limitations resulting from the use of the conventional FEM in structural optimization. In isogeometric analysis, the same spline information such as control points and spline basis functions which represent geometries in CAD systems are also used in numerical analysis. Such unification of the mathematical languages in CAD, analysis and design optimization can resolve the issues mentioned above. In this work, structural shape optimization using isogeometric analysis is studied on 2D and shell problems. The proposed framework is extended to topology optimization using trimming techniques. New inner fronts are introduced by trimming spline curves in topology optimization. Trimmed surface analysis which was recently proposed to analyze arbitrary complex topology problems is employed for topology optimization. Some benchmarking problems in shape and topology optimization are treated using the proposed approach.  相似文献   

13.
为了改善柔性机构动态可靠性分析的效率和精度,基于支持向量机SVM(Support Vector Machine)回归理论,提出了一种柔性机构动态可靠性分析高效率高精度的SVM回归极值法SREM(SVM Regression Extremum Method)。首先,介绍了柔性机构可靠性分析的基本理论;其次,融合蒙特卡洛法MC(Monte Carlo)和SVM回归理论,建立了柔性机构动态响应极值的代理模型,并利用代理模型进行柔性机构可靠性分析。最后,利用SREM法对柔性机构实例进行了可靠性分析,并与MC和人工神经网络ANN(Artificial Neural Networks)的分析结果进行比较。结果显示,在小样本情况下,进行柔性机构动态可靠性分析时,SREM的计算效率和计算精度都比ANN高;SREM的计算效率比MC大大提高,计算精度与MC相当。验证了在柔性机构可靠性分析中SREM的高效率和高精度,并证明了SREM在柔性机构可靠性分析中的可行性和有效行性。  相似文献   

14.
A novel kind of lightweight integrated thermal protection system, named pyramidal core sandwich panel, is proposed to be a good safeguard for hypersonic aircrafts in the current study. Such system is considered as not only an insulation structure but also a load-bearing structure. In the context of design for hypersonic aircrafts, an efficient optimization should be paid enough attention. This paper concerns with the homogenization of the proposed pyramidal sandwich core panel using two-dimensional model in subsequent research for material selection. According to the required insulation performance and thermal–mechanical properties, several suitable material combinations are chosen as candidates for the pyramidal core sandwich panel by adopting finite element analysis and approximate response surface. To obtain lightweight structure with an excellent capability of heat insulation and load-bearing, an investigation on some specific design variables, which are significant for thermal–mechanical properties of the structure, is performed. Finally, a good balance between the insulation performance, the capability of load-bearing and the lightweight has attained.  相似文献   

15.
A Jeffcott rotor with an additional magnetic bearing locating at the disc is employed to investigate the effect of time delays on the non-linear dynamical behavior of the system. The time delays are presented in the proportional and derivative feedback, respectively. For the corresponding autonomous system, a linear stability analysis is performed for the system with two identical time delays in the control loop. The nature of a single Hopf bifurcation is determined by constructing a center manifold. For the non-autonomous system, the primary resonance response is studied for its small non-linear motions using the method of averaging. The effects of time delays and control gains, as well as excitation amplitude, on the amplitude of the steady-state response are investigated. Finally, experiments are carried out to validate the theoretical predictions.  相似文献   

16.
张博  丁虎  陈立群 《力学学报》2021,53(4):1093-1102
旋转叶片结构的振动失效占据了航空发动机整机故障的相当比重. 发展针对旋转叶片结构的减振技术对于减轻叶片重量, 提升叶片性能, 延长叶片寿命具有重要意义. 通过引入压电纤维复合材料(macro fiber composite, MFC)传感器和作动器, 研究预变形旋转叶片2:1内共振的主动控制. 建立考虑时滞效应的旋转叶片比例微分闭环控制系统运动方程. 通过摄动分析推导出受控叶片的演化方程, 并结合延拓法揭示速度增益、位移增益、时滞量等系统参数对受控系统稳态响应及稳定性的影响规律. 理论研究结果与数值结果得到相互验证. 研究发现时滞量对系统稳定性影响显著, 当时滞超过某临界值时, 演化方程原有的平衡点失稳, 闭环受控系统将缓慢进入一个大振幅的周期运动, 从而丧失控制效果. 位移增益存在一个范围使得系统出现多值稳态响应, 进而破坏了增益平面内系统稳定区和非稳定区域的直线边界. 不恰当的速度增益和位移增益会给受控系统引入新的共振. 研究结果为叶片结构的减振提供了理论基础.   相似文献   

17.
Proton radiography is a very powerful diagnostic but in some high debris environments it may be challenging to get a good signal-to-noise ratio radiograph to gain insights into the electric and magnetic field topology, and thus the basic physics. Such environments are produced for example on z-pinches and also on lasers such as the National Ignition Facility. We demonstrate here the feasibility of clean, very high signal-to-noise ratio proton radiographs in extremely hostile environments.  相似文献   

18.
Studied in this work are the formulation of equations of motion and the response to parametric excitation of a uniform cantilever beam moving longitudinally over a single bilateral support. The equations of motion are generated by using assumed modes to discretize the beam, by regarding the support as a kinematic constraint, and by employing an alternate form of Kane's method that is particularly well suited to systems subject to constraints. Instability information is developed using the results of perturbation analysis for harmonic longitudinal motions of small amplitude and with Floquet theory for general periodic motions of any amplitude. Results demonstrate that definitive instability information can be obtained for a beam moving longitudinally over supports based on the frequencies of free transverse vibration of a beam that is longitudinally fixed.  相似文献   

19.
Material models are the key ingredients to accurately capture the global mechanical response of structural systems. The use of finite element analysis has proven to be effective in simulating nonlinear engineering applications. However, the choice of the appropriate material model plays a big role in the value of the numerical predictions. Such models are not expected to exactly reproduce global experimental response in all cases. Alternatively, the measured global response at specific domain or surface points can be used to guide the nonlinear analysis to successively extract a representative material model. By selecting an initial set of stress–strain data points, the load–displacement response at the monitoring points is computed in a forward incremental analysis without iterations. This analysis retains the stresses at the integration points. The corresponding strains are not accurate since the computed displacements are not anticipated to match the measured displacements at the monitoring points. Therefore, a corrective incremental displacement analysis is performed at the same load steps to adjust for displacements and strains everywhere by matching the measured displacements at the monitoring points. The stress–strain vectors at the most highly stressed integration point are found to establish an improved material model. This model is used within a multi-pass incremental nonlinear finite element analysis until the discrepancy between the measured and the predicted structural response at the monitoring points vanishes. The J2 flow theory of plasticity is used as a constitutive framework to build the tangent elastic–plastic matrices. The applicability of the proposed approach is demonstrated by solving 2D inverse continuum problems. The comparisons presented support the effectiveness of the proposed approach in accurately calibrating the J2 plasticity material model for such problems.  相似文献   

20.
为研究不同因素对粤东高烈度地区双曲面摩擦摆支座高速公路典型桥梁工程地震响应的影响,选取潮安韩江特大桥主桥(55+4×90+55)m为研究对象,该桥所有墩梁之间均采用双曲面摩擦摆支座。采用ANSYS有限元软件建立全桥模型,基于时程分析法研究了多种因素下桥梁结构的地震响应。研究表明,在纵桥向地震动激励下,桩土的相互作用对各桥墩墩底地震响应影响显著;栓钉全部剪断比栓钉全部不剪断的各桥墩墩底弯矩和剪力分布更均匀,桥墩上的固定支座栓钉不剪断将会增加该桥墩的弯矩、剪力以及支座剪力,但对其他桥墩的影响较小;该研究成果可应用于带栓钉的摩擦摆支座桥梁的地震响应分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号