首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
Oil-in-water emulsions were prepared using montmorillonite clay platelets, pre-treated with quaternary amine surfactants. In previous work, cetyl trimethylammonium bromide (CTAB) has been used. In this study, two more hydrophilic quaternary amine surfactants, Berol R648 and Ethoquad C/12, were used and formed Pickering emulsions, which were more stable than the emulsions prepared using CTAB coated clay. The droplets were also more mono-disperse. The most hydrophilic surfactant Berol R648 stabilizes the emulsions best. Salt also plays an important role in forming a stable emulsion. The droplet size decreases with surfactant concentration and relatively mono-disperse droplets can be obtained at moderate surfactant concentrations. The time evolution of the droplet size indicates a good stability to coalescence in the presence of Berol R648. Using polarizing microscopy, the clay platelets were found to be lying flat at the water oil interface. However, a significant fraction (about 90%) of clay stayed in the water phase and the clay particles at the water-oil interface formed stacks, each consisting of four clay platelets on average.  相似文献   

2.
There have been reports, originally by the Bristol group, and subsequently by others, of the preparation and properties of emulsions of stable, nearly monodisperse droplets of poly(dimethylsiloxane) (PDMS) in water, where no added surfactant is used. It has been assumed that their stability is due to the high density of surface-ionized hydroxyl groups, similar in fact to the closely related St?ber silica particles. In this study we confirm, from droplet lifetime studies, that droplets, prepared from such synthesized PDMS, are significantly more stable to coalescence than similar-sized droplets prepared from three types of commercially available PDMS, containing HO-, MeO-, or Me3-terminated chains, respectively. It is shown, however, that the zeta potentials of the synthesized PDMS and of the various commercial oils are all very similar (as indeed are their Hamaker constants). So some other explanation must be inferred for the enhanced stability to coalescence of the synthesized PDMS droplets compared to the commercial PDMS droplets. It is shown, for droplets formed from n-hexane and the synthesized oil, that stability to coalescence is conferred at PDMS volume fractions (phiPDMS) around 0.2 in the mixture. The synthesized PDMS is known to consist of mixtures of cyclic PDMS and short-chain linear species, with terminal -OH groups. There is some (indirect) evidence that in the interval 0.25 < phiPDMS < 0.35, the linear PDMS chains may be adsorbed close to a monolayer at the mixed oil/water interface, possibly conferring some enhanced Gibbs elasticity to the interface. This underpins the possibility that, in the synthesized oil droplets themselves, there is also preferential adsorption of the linear chains at the PDMS/water interface, and this leads to a value of the Gibbs elasticity, sufficient to significantly reduce coalescence. Unfortunately, the Gibbs elasticity could not be measured in this case. However, such preferential adsorption is unlikely to occur with the commercial PDMS oils, which are not so heterogeneous. Finally, it is shown that droplets of the three commercial PDMS oils could be stabilized against coalescence, if a sufficient, minimum amount of sodium dodecyl sulfate (SDS) is added. Gibbs elasticity values have been estimated in these cases, from plots of interfacial tension against ln(SDS concentration).  相似文献   

3.
Oil-in-water emulsions stabilised by anionic surfactant and gelatin provide the bulk of photographic coating fluids. Their rheology is of crucial importance to the fluids' performance in coating and their concentration in drying. Gelatin complexes with non-adsorbed micelles and adsorbs to the oil-surfactant-water interface, which effects an increase in the viscosity of the continuous phase and the volume of the nano-sized oil droplets, respectively. The consequences of these interactions are high viscosity and strong shear thinning. Here, the effects on the emulsion rheology of a series of bulk, commercially available surfactants were studied. These co-surfactants were chosen so as to weaken the interactions between gelatin and the anionic surfactant and hence reduce viscosity and thinning thus enabling the emulsions to be concentrated. The co-surfactants had polar head groups of three types: simple nonionic based on polyethylenenoxide, simple cationic based on a quaternary alkyltrimethyl ammonium, and combined nonionic-cationic based on a quaternised bis-ethoxylated primary amine. This last type proved the most effective at reducing the low-shear viscosity of the emulsion and reducing the shear thinning, although, at high concentrations the polyethoxylated cationic surfactants induced flocculation and coalescence of the oil droplets.  相似文献   

4.
Oil-in-water (O/W) emulsions were prepared using a hydrophobically modified inulin surfactant, INUTEC®SP1. The quality of the emulsions was evaluated using optical microscopy. Emulsions, prepared using INUTEC®SP1 alone had large droplets, but this could be significantly reduced by addition of a cosurfactant to the oil phase, namely Span 20. The stability of the emulsions was investigated in water, in 0.5, 1.0 and 2 mol dm−3 NaCl as well as 0.5, 1.0, 1.5 and 2 mol dm−3 MgSO4. All emulsions containing NaCl did not show any strong flocculation or coalescence up to 50 °C for almost 1 year storage. With MgSO4 they were stable up to 50 °C and 1 mol dm−3. The stability of the emulsions against strong flocculation and coalescence could be attributed to the conformation of the polymeric surfactant at the O/W interface (multipoint attachment with several loops) and the strong hydration of the polyfructose chain in such high electrolyte concentrations. This was confirmed using cloud point measurements, which showed absence of any cloudiness up to 100 °C and at NaCl concentrations reaching 4 mol dm−3 and MgSO4 reaching 1 mol dm−3. These high cloud points in electrolyte solutions could not be reached with polyethylene glycol. This clearly demonstrated the superiority of INUTEC®SP1 surfactant as an emulsion stabiliser when compared with surfactants based on polyethylene glycol. Viscoelastic measurements showed a gradual increase in the storage modulus G′ with storage time both at room temperature and 50 °C. This was indicative of weak flocculation and absence of coalescence. The weak flocculation of the emulsions could be attributed to the presence of an energy minimum, Gmin, in the energy–distance curve.  相似文献   

5.
The droplet size distribution (DSD) of emulsions is the result of two competitive effects that take place during emulsification process, i.e., drop breakup and drop coalescence, and it is influenced by the formulation and composition variables, i.e., nature and amount of emulsifier, mixing characteristics, and emulsion preparation, all of which affect the emulsion stability. The aim of this study is to characterize oil-in-water (O/W) emulsions (droplet size and stability) in terms of surfactant concentration and surfactant composition (sodium dodecyl benzene sulphonate (SDBS)/Tween 80 mixture). Ultraviolet-visible (UV-vis) transmission spectroscopy has been applied to obtain droplet size and stability of the emulsions and the verification of emulsion stability with the relative cleared volume technique (time required for a certain amount of emulsion to separate as a cleared phase). It is demonstrated that the DSD of the emulsions is a function of the oil concentration and the surfactant composition with higher stability for emulsions prepared with higher SDBS ratio and lower relative cleared volume with the time. Results also show that smaller oil droplets are generated with increasing Tween 80 ratio and emulsifier concentration.  相似文献   

6.
In existing theories emulsion desiabilization is considered as the combined processes of irreversible flocculation and coalescence of dispersed droplets. This approach can be justified when the potential pit characterizing the energy of droplet interaction is sufficiently deep, i.e. excluding small droplet dimensions, strong electrosiatic repulsion and low electrolyte concentrations. For smaller droplet dimensions and stronger electrostatic repulsions the emulsion instability must be considered as a combined process of reversible flocculation and coalescence. In this paper a mathematical model that couples the kinetics of flocculation, coalescence and floe fragmentation is developed in order to quantify the kinetic instability of emulsions with charged submicron droplets. The characteristic limes for flocculation (Smoluchowski's time τc) for coalescence (coalescence time τc) and for disaggregation (doublet lifetimeτd) are considered model parameters. The mathematical model applies to the case when and τd<< τc, which corresponds to a situation with a small multiplet concentration compared to the concentration of doublets and a singlet-doublet quasi-equilibrium. It is established that at singlet-doublet quasi-equilibrium the rate of the decline in the total droplet concentration is described by second order kinetics in distinction to the exponential time dependence valid for coalescence at irreversible flocculation. The double disintegration reduces the entire coalescence rate, expressed as τsm/ τd. This reduction is very large at small values of Td. The mathematical model presented can hased on the spontaneous disintegration of doublets predict changes in emulsion stability for model systems and also for technologically important emulsions.  相似文献   

7.
This study evaluated how variations in polyglycerol polyricinoleate (PGPR) concentration and ethanol dispersed phase content affect the stability of ethanol-in-oil (E/O) emulsions. Results indicate that the stable 10?wt% E/O emulsions can be produced using 2?wt% PGPR. Increasing the ethanol dispersed phased content at constant PGPR concentration caused instability in emulsion. These emulsions remained stable to droplet flocculation and coalescence in the presence of Centella asiatica ethanol extract. PGPR does not greatly decrease the interfacial tension of the ethanol–oil interface. However, it adsorbed at the interface and stabilized the ethanol droplets in the emulsion via steric mechanism.  相似文献   

8.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in heat-treated oil-in-water emulsions stabilized by a globular protein were examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization; (3) 10 mg/mL beta-Lg added before homogenization. The emulsions were then subjected to various isothermal heat treatments (30-95 degrees C for 20 min), with the 150 mM NaCl being added either before or after heating. Emulsion 1 contained little nonadsorbed protein and exhibited extensive droplet aggregation at all temperatures, which was attributed to the fact that the droplets had a high surface hydrophobicity, e.g., due to exposed oil or extensive protein surface denaturation. Emulsions 2 and 3 contained a significant fraction of nonadsorbed beta-Lg. When the NaCl was added before heating, these emulsions were relatively stable to droplet flocculation below a critical holding temperature (75 and 60 degrees C, respectively) but showed extensive flocculation above this temperature. The stability at low temperatures was attributed to the droplets having a relatively low surface hydrophobicity, e.g., due to complete saturation of the droplet surface with protein or due to more limited surface denaturation. The instability at high temperatures was attributed to thermal denaturation of the adsorbed and nonadsorbed proteins leading to increased hydrophobic interactions between droplets. When the salt was added to Emulsions 2 and 3 after heating, little droplet flocculation was observed at high temperatures, which was attributed to the dominance of intra-membrane over inter-membrane protein-protein interactions. Our data suggests that protein concentration and order of addition have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of many emulsion-based products.  相似文献   

9.
Stable carbon dioxide-in-water emulsions were formed with silica nanoparticles adsorbed at the interface. The emulsion stability and droplet size were characterized with optical microscopy, turbidimetry, and measurements of creaming rates. The increase in the emulsion stability as the silica particle hydrophilicity was decreased from 100% SiOH to 76% SiOH is described in terms of the contact angles and the resulting energies of attachment for the silica particles at the water-CO(2) interface. The emulsion stability also increased with an increase in the particle concentration, CO(2) density, and shear rate. The dominant destabilization mechanism was creaming, whereas flocculation, coalescence, and Ostwald ripening played only a minor role over the CO(2) densities investigated. The ability to stabilize these emulsions with solid particles at CO(2) densities as low as 0.739 g/mL is particularly relevant in practical applications, given the difficulty in stabilizing these emulsions with surfactants, because of the unusually weak solvation of the surfactant tails by CO(2).  相似文献   

10.
Dilute emulsions of dodecane in water were prepared under constant flow rate conditions with binary surfactant systems. The droplet size distribution was measured as a function of the mixed surfactant composition in solution. The systems studied were (a) the mixture of anionic sodium dodecyl sulfate (SDS) with nonionic hexa(ethyleneglycol) mono n-dodecylether (C12E6) and (b) the mixture of cationic dodecyl pyridinium chloride (DPC) with C12E6. At a constant concentration of SDS or DPC surfactant in solution (below the CMC) the mean emulsion droplet size decreases with the increase in the amount of C12E6 added to the solution. However, a sharp break of this droplet size occurs at a critical concentration and beyond this point the mean droplet size did not significantly change upon further increase of the C12E6. This point was found to corresponded to the CMC of the mixed surfactant systems (as previously determined from microcalorimetry measurements) and this result suggested the mixed adsorption layer on the emulsion droplet was similar to the surfactant composition on the mixed micelles. The emulsion droplet size as a function of composition at the interface was also studied. The mean emulsion droplet size in SDS-C12E6 solution was found to be lower than that in DPC-C12E6 system at the equivalent mole fraction of ionic surfactant at interface. This was explained by the stronger interactions between sulphate and polyoxyethylene head groups at the interface, which facilitate the droplet break-up. Counterion binding parameter (beta) was also determined from zeta-potential of dodecane droplets under the same conditions and it was found that (beta) was independent of the type of the head group and the mole fraction of ionic surfactant at interface.  相似文献   

11.
The influence of thermal processing on droplet flocculation in oil-in-water emulsions stabilized by either beta-lactoglobulin (primary emulsions) or beta-lactoglobulin-iota-carrageenan (secondary emulsions) at pH 6 has been investigated. In the absence of salt, the zeta-potential of the primary emulsion was less negative (-40 mV) than that of the secondary emulsion (-55 mV) due to adsorption of anionic iota-carrageenan to the anionic beta-Lg-coated droplet surfaces. The zeta-potential and mean diameter (d(43) approximately 0.3 microm) of droplets in primary and secondary emulsions did not change after storage at temperatures ranging from 30 to 90 degrees C. In the presence of 150 mM NaCl, the zeta-potential of the primary emulsion was much less negative (-27 mV) than that of the secondary emulsion (-50 mV), suggesting that the latter was less influenced by electrostatic screening effects. The zeta-potential of the primary emulsions did not change after storage at elevated temperatures (30-90 degrees C). The zeta-potential of the secondary emulsions became less negative, and the aqueous phase iota-carrageenan concentration increased at storage temperatures exceeding 50 degrees C, indicating iota-carrageenan desorbed from the beta-Lg-coated droplets. In the primary emulsions, appreciable droplet flocculation (d(43) approximately 8 microm) occurred at temperatures below the thermal denaturation temperature (T(m)) of the adsorbed proteins due to surface denaturation, while more extensive flocculation (d(43) > 20 microm) occurred above T(m) due to thermal denaturation. In the secondary emulsions, the extent of droplet flocculation below T(m) was reduced substantially (d(43) approximately 0.8 microm), which was attributed to the ability of adsorbed carrageenan to increase droplet-droplet repulsion. However, extensive droplet flocculation was observed above T(m) because carrageenan desorbed from the droplet surfaces. Differential scanning calorimetry showed that iota-carrageenan and beta-Lg interacted strongly in aqueous solutions containing 0 mM NaCl, but not in those containing 150 mM NaCl, presumably because salt weakened the electrostatic attraction between the molecules.  相似文献   

12.
The creaming and rheology of oil-in-water emulsions (30 vol% n-tetradecane, pH 6.8) stabilized by a mixture of commercial sodium caseinate and the non-ionic emulsifier polyoxyethylene sorbitan monolaurate (Tween 20) has been investigated at 21 degrees C. The presence of sufficient Tween 20 to displace most of the protein from the emulsion droplet surface leads to greatly enhanced emulsion creaming (and strongly non-Newtonian rheology) which is indicative of depletion flocculation by nonadsorbed surface-active material (protein and emulsifier). In emulsions containing a constant amount of surface-active material, the replacement of a very small fraction of Tween 20 by caseinate in a stable pure Tween 20 emulsion leads to enhanced creaming for a small fraction of the droplets, and this fraction increases with increasing replacement of emulsifier by protein. This behavior is probably due to depletion flocculation, although an alternative bridging mechanism is also a possibility. The overall stability of these sets of emulsions can be represented in terms of a global stability diagram containing regions of bridging flocculation and coalescence (low content of surface-active material), stability (intermediate content), and depletion flocculation (high content). Copyright 1999 Academic Press.  相似文献   

13.
W/C emulsions were stabilized using hydrophobic silica particles adsorbed at the interface, resulting in average droplet diameters as low as 7.5 microm. A porous cross-linked shell was formed about a hydrophilic (colloidal and fumed) silica core with a trifunctional silylating agent, (heptadecafluoro-1,1,2,2-tetrahydrodecyl)triethyoxysilane, to render the particles CO(2)-philic. The stability of emulsions comprising equal weights of CO(2) and water was assessed with visual observations of settling fronts and the degree of emulsion coalescence, and the average drop size was measured by optical microscopy. The effect of CO(2) density on both emulsion stability and droplet size was determined quantitatively. The major destabilizing mechanism of the emulsions was settling, whereas Ostwald ripening and coalescence were not visible at any density, even over 7 days. Flocculation of the settling droplets did not occur, although gelation of the emulsions through particle interactions resulted after longer periods of time. CO(2)-philic particles offer a new route to highly stable W/C emulsions, with particle energies of attachment on the order of 10(6)kT, even at CO(2) densities as low as 0.78 g ml(-1). At these low densities, surfactants rarely stabilize emulsions as the result of poor surfactant tail solvation.  相似文献   

14.
A method has been developed for attaching oil (tetradecane) droplets to the end of an atomic force microscopy (AFM) cantilever and for immobilizing droplets on a glass substrate. This approach has permitted the monitoring of droplet-droplet interactions in aqueous solution as a function of interdroplet separation. Coating the droplet surfaces with added proteins or surfactants has allowed the production of model emulsions. We demonstrate that AFM measurements of droplet deformability are sensitive to interfacial rheology by modifying the interfacial film on a pair of droplets in situ. For droplets coated with the anionic surfactant sodium dodecyl sulfate, screening of the double layer has been found to facilitate coalescence. Direct imaging of the droplets has revealed the presence of regularly spaced concentric rings on the droplet surfaces. Careful experimental studies suggest that these structures may be imaging artifacts and are not perturbations of the droplet surface determined by the composition of the interface.  相似文献   

15.
The emulsifying and oil-in-water stabilizing properties of methylcellulose (MeC) were investigated in bovine serum albumin (BSA)-based emulsions. The creaming stability, flocculation, surface concentration of BSA and MeC and droplet size were determined. Results obtained showed modifications of creaming rates that were related to MeC concentrations in the continuous and dispersed phases. Viscosity effects on creaming and changes in average droplet size (d43) relating to droplet coverage were identified and delineated. Studies performed on macroscopic oil–water and air–water interfaces were used to identify interfacial structuring and composition. A good agreement was found between droplet surface composition and the resistance to coalescence of emulsion droplets. Emulsions that demonstrated a more rigid-like adsorbed interfacial layer were more stable with respect to coalescence. This study involving model emulsion systems provides a new insight into the stability of industrial preparations containing mixtures of proteins and polysaccharides.  相似文献   

16.
The influence of droplet flocculation on the creaming stability of monodisperse n-hexadecane oil-in-water emulsions was studied. The creaming velocity of emulsions with different droplet radii (0.43 and 0.86 μm), droplet concentrations (1-67 vol%), and sodium dodecyl sulfate (SDS) concentrations (7-80 mM) were measured. Depletion flocculation was observed in the emulsions when the aqueous phase SDS concentration exceeded a particular level ( approximately 40 mM for 0.43-μm droplets and approximately 15 mM for 0.86-μm droplets). Creaming was monitored by measuring the back-scattered light from an emulsion as a function of its height. The creaming velocity increased with increasing flocculation and decreased with increasing droplet concentration. These results have important implications for the formulation of emulsion-based materials. Copyright 2000 Academic Press.  相似文献   

17.
Partially hydrophobised fumed silica particles are used to make silicone oil-in-water emulsions at natural pH of the aqueous phase. The stability and rheological properties of the emulsions and suspensions are studied at NaCl concentrations in the range 0-100 mM. It is found that all emulsions are very stable to coalescence irrespective of the NaCl concentration. However, a strong effect of electrolyte on the creaming and rheological properties is observed and linked to the particle interactions in aqueous suspensions. The creaming rate and extent are large at low electrolyte concentrations but both abruptly decrease at salt concentrations exceeding the critical flocculation concentration of the suspension (approximately 1 mM NaCl). The drastic improvement of the stability to creaming is attributed to the formation of a visco-elastic three-dimensional network of interconnected particles and emulsion droplets.  相似文献   

18.
Coalescence of dispersed micrometer-scale droplets is an essential step toward the separation of emulsions. The thin film between droplets must form, drain, and rupture for coalescence to occur. In surfactant-stabilized emulsions, the film drainage and droplet coalescence processes are known to be hindered because of reduced interfacial mobility. However, a clear correlation between this mobility and the underlying surfactant transport and interfacial response to shear and dilatational deformations is undercharacterized. For microscale droplets, the effect of surfactant transport to the interface and along the interface is often difficult to isolate from other bulk effects on emulsion stability. In this work, we review surfactant-mitigated coalescence in both macroscale and microscale experiments, highlighting the importance of interfacial curvature and length scales when establishing a correlation between coalescence theory and film mobility.  相似文献   

19.
Acid labile surfactants containing an ortho ester link are used as emulsifiers for an aliphatic oil, squalane. The emulsions were made in the presence of a cationic polymer, either polyamine or the corresponding hydrophobically modified polyamine. Spontaneous hydrolysis of the surfactant resulted in emulsions stabilized by polymer together with degradation products from the surfactant. The effect of breakdown of the surfactant on the emulsion was evaluated by means of droplet size measurements and kinetic stability. One linear and one branched nonionic ortho ester surfactant with the same number of oxyethylene units were characterized and used for the purpose. The ortho ester surfactants are complex mixtures of components, ranging from very hydrophilic to very hydrophobic species. The chemical shift of the central methine proton in the ortho ester link is extremely sensitive to the substitution pattern and it was possible to identify by (1)H NMR the components that make up the surfactants, as has been reported earlier. The change in emulsion stability, the change in droplet size and the rate of surfactant hydrolysis were studied at acidic pH at room temperature. Both gas chromatography and (1)H NMR were used in order to monitor the surfactant degradation. The presence of a polymer gave a more sluggish breakdown of the surfactants, probably due to hydrophobic shielding by the polymer. There was a good correlation between increase of droplet size and degree of surfactant decomposition.  相似文献   

20.
This review deals with the preparation, stability, rheology and different applications of highly concentrated emulsions. These emulsions, which are known as high internal phase ratio emulsions (HIPRE), gel-emulsions, biliquid foams, etc., containing over 90% internal phase by volume, have a swollen micellar (L1 or L2) solution of nonionic or ionic surfactants as a continuous phase. These emulsions have the structure of biliquid foams and behave as gels since they present viscoelastic and plastic properties. The functional macroscopic properties of gel-emulsions are dependent on the structural parameters of the microemulsion continuous phase as well as of the interfacial properties (interfacial tension, bending modules, spontaneous curvature) of surfactant monolayers. The depletion interaction between emulsion droplets due to the non-compensated osmotic pressure of micelles is revealed as a main factor, along with surface forces, which determine the aggregative stability and the rheological properties of these emulsions. The effect of electrolyte and surfactant concentration, temperature, as well as other physicochemical parameters on the fiocculation threshold, stability, and yielding properties of highly concentrated emulsions is explained by the effect of these parameters on the critical micelle concentration (CMC) and the aggregation number of surfactants, and, consequently, on the depletion interaction. The thermodynamic theory of adhesion of fluid droplets in micellar solution and the suggested model of elasticity of gel-emulsions permit to explain the effect of mentioned physicochemical parameters on the elasticity modulus, the plastic strength and the linear deformation of these emulsions. A novel mechanism for the spontaneous formation of gel-emulsions by the phase inversion temperature (PIT) route is suggested, allows the selection of ternary systems able to yield these emulsions, and explains how the droplet size can be controlled during the PIT process. An original model for liquid film rupture is also suggested, and allows the prediction of the effect of structural parameters of micellar solutions and the interfacial properties of surfactant monolayers on the stability of gel-emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号