首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
孙亚宾  付军  王玉东  周卫  张伟  刘志弘 《中国物理 B》2016,25(4):48501-048501
In this work, temperature dependences of small-signal model parameters in the SiGe HBT HICUM model are presented. Electrical elements in the small-signal equivalent circuit are first extracted at each temperature, then the temperature dependences are determined by the series of extracted temperature coefficients, based on the established temperature formulas for corresponding model parameters. The proposed method is validated by a 1 × 0.2 × 16 μm~2 SiGe HBT over a wide temperature range(from 218 K to 473 K), and good matching is obtained between the extracted and modeled results. Therefore, we believe that the proposed extraction flow of model parameter temperature dependence is reliable for characterizing the transistor performance and guiding the circuit design over a wide temperature range.  相似文献   

2.
In this paper, the physical mechanism of the interaction between electromagnetic wave and spectral-hole burning crystal material is investigated in detail. In the small signal regime, a perturbation theory model is used to analyze the mechanism of spectral-hole burning. By solving the Liouville equation, three-order perturbation results are obtained. From the theoretic analysis, spectral-hole burning can be interpreted as a photon echo of the zero-order diffraction echo when the first optical pulse and the second optical pulse are overlapped in time. According to the model, the spectral-hole width is dependent on the chirp rate of the reading laser. When the chirp rate is slow with respect to the spectral features of interest,the spectral hole is closely mapped into time domain. For a fast chirp rate, distortions are observed. The results follow Maxwell–Bloch model and they are also in good agreement with the experimental results.  相似文献   

3.
An original theoretical model for describing the low-temperature thermal conductivity in systems with a region of forbidden values(a gap) in the phonon spectrum is proposed. The model is based on new experimental results on the temperature dependence of the phonon diffusion coefficient in nanoceramics and dielectric glasses which showed a similar anomalous behavior of the diffusion coefficient in these systems that may be described under the assumption of a gap in the phonon spectrum. In this paper, the role of the gap in low-temperature behavior of the thermal conductivity, κ(T), is analyzed. The plateau in the temperature dependence of the thermal conductivity is shown to correlate with the position and the width of the gap. The temperature dependence of thermal conductivity of such systems when changing the scattering parameters related to various mechanisms is studied. It is found that the umklapp process(U-processes) involving low-frequency short-wavelength phonons below the gap forms the behavior of the temperature dependence of thermal conductivity in the plateau region. A comparison of the calculated and experimental results shows considerable possibilities of the model in describing the low-temperature thermal conductivity in glass-like systems.  相似文献   

4.
Optical fiber temperature sensor based on wavelength-dependent detection   总被引:1,自引:0,他引:1  
Semiconductor fiber temperature sensors have been used widely in many fields, but most of them pick up temperature by measuring the optical intensity of certain fixed narrow-band in absorption spectrum. Furthermore,they are sensitive to the loss of optical intensity and the fluctuation of light source power. The novel temperature measurement system proposed in this paper is based on the semiconductor absorption theory and the spectral analysis of method.To measure temperature,the sensor model detects not the certain narrow-band spectrum but the most spectra of the optical absorption edge.Therefore the measurement accuracy and the stability can be improved greatly.Experimental results are in agreement with theoretical analysis results perfectly.  相似文献   

5.
An observation-based Galactic Cosmic Ray(GCR)spectral model for heavy nuclei is developed.Zhao and Qin[J.Geophys.Res.Space Phys.118,1837(2013)]proposed an empirical elemental GCR spectra model for nuclear charge 5≤z≤28 over the energy range^30 to 500 Me V/nuc,which is proved to be successful in predicting yearly averaged GCR heavy nuclei spectra.Based on the latest highly statistically precise measurements from ACE/CRIS,a further elemental GCR model with monthly averaged spectra is presented.The model can reproduce the past and predict the future GCR intensity monthly by correlating model parameters with the continuous sunspot number(SSN)record.The effects of solar activity on GCR modulation are considered separately for odd and even solar cycles.Compared with other comprehensive GCR models,our modeling results are satisfyingly consistent with the GCR spectral measurements from ACE/SIS and IMP-8,and have comparable prediction accuracy as the Badhwar&O’Neill 2014 model.A detailed error analysis is also provided.Finally,the GCR carbon and iron nuclei fluxes for the subsequent two solar cycles(SC 25 and 26)are predicted and they show a potential trend in reduced flux amplitude,which is suspected to be relevant to possible weak solar cycles.  相似文献   

6.
In LiNbO3:Fe, anomalous behaviour of grating erasure is observed with different wavelengths, i.e. rapid grating erasure in the short wavelength range, which deviates from the results predicted by the electron transport band model. The deviation is related to the coexistence of electrons and holes in photorefraction, and charge-transfer process including electrons and hole has been proposed. The electron and hole contributions to photoconductivity have been identified by experiments. We also give the theoretical dependence of electron photo-excitation coefficient S of the Fe centre on the wavelength.  相似文献   

7.
The effects of temperature on a surface plasmon studied experimentally and theoretically. SPR resonance (SPR) sensor in Kretschmann configuration are experiments are carried out over a temperature range of 278- 313 K in steps of 5 K. A detailed theoretical model is provided to analyze the variation of performance with varying temperature of the sensing environment. The temperature dependence of the properties of the metal, dielectric, and analyte are studied, respectively. The numerical results indicate that the predictions of the theoretical model are well consistent with the experiment data.  相似文献   

8.
The impacts of remote Coulomb scattering(RCS)on hole mobility in ultra-thin body silicon-on-insulator(UTB SOI)p-MOSFETs at cryogenic temperatures are investigated.The physical models including phonon scattering,surface roughness scattering,and remote Coulomb scatterings are considered,and the results are verified by the experimental results at different temperatures for both bulk(from 300 K to 30 K)and UTB SOI(300 K and 25 K)p-MOSFETs.The impacts of the interfacial trap charges at both front and bottom interfaces on the hole mobility are mainly evaluated for the UTB SOI p-MOSFETs at liquid helium temperature(4.2 K).The results reveal that as the temperature decreases,the RCS due to the interfacial trap charges plays an important role in the hole mobility.  相似文献   

9.
A discriminative framework of tone model integration in continuous speech recognition was proposed. The method uses model dependent weights to scale probabilities of the hidden Markov models based on spectral features and tone models based on tonal features. The weights are discriminatively trained by minimum phone error criterion. Update equation of the model weights based on extended Baum-Welch algorithm is derived. Various schemes of model weight combination are evaluated and a smoothing technique is introduced to make training robust to over fitting. The proposed method is ewluated on tonal syllable output and character output speech recognition tasks. The experimental results show the proposed method has obtained 9.5% and 4.7% relative error reduction than global weight on the two tasks due to a better interpolation of the given models. This proves the effectiveness of discriminative trained model weights for tone model integration.  相似文献   

10.
A thermodynamic cavitation model is developed to simulate the cavitating water flow in a wide temperature range. The thermal effect on bubble growth during cavitation is introduced in the developed model by considering both pressure difference and heat transfer between the vapor and liquid phase. The cavitating turbulent flow over a NACA0015 hydrofoil has been simulated at various temperatures from room temperature to 150°C by using the present cavitation model, which has been validated by the experimental data. It is seen that the thermodynamic effects of cavitation, vapor depression and temperature depression are much more predominant in high temperature water compared with those in room temperature water. These results indicate that the proposed thermodynamic cavitation model is reasonably applicable to the cavitating water flow in a wide temperature range.  相似文献   

11.
This paper presents a new continuum thermal stress theory for crystals based on interatomic potentials.The effect of finite temperature is taken into account via a harmonic model.An EAM potential for copper is adopted in this paper and verified by computing the effect of the temperature on the specific heat,coefficient of thermal expansion and lattice constant.Then we calculate the elastic constants of copper at finite temperature.The calculation results are in good agreement with experimental data.The thermal stress theory is applied to an anisotropic crystal graphite,in which the Brenner potential is employed.Temperature dependence of the thermodynamic properties,lattice constants and thermal strains for graphite is calculated.The calculation results are also in good agreement with experimental data.  相似文献   

12.
高曾辉  吕百达 《中国物理》2006,15(2):334-339
The concept of partially coherent nonparaxial modified Bessel--Gauss (MBG) beams is proposed. Based on the generalized Rayleigh-Sommerfeld diffraction integral, the analytical propagation equations of nonparaxial MBG beams in free space are derived and analysed, and some special cases are discussed. In particular, under the paraxial approximation our results reduce to the corresponding paraxial ones. Numerical calculation examples are given to illustrate the dependence of intensity and spectral degree of coherence on the beam order $m$, \textit{$\xi $} and $f$ parameters, and to compare the difference between the paraxial and nonparaxial results.  相似文献   

13.
王翡  蒋红兵  龚旗煌 《中国物理 B》2014,23(1):14201-014201
The propagation of femtosecond laser pulses in N2-filled hollow fibers is studied both theoretically and experimentally. The laser pulse aligns the N2 molecules and changes the refractive index, which meanwhile modulates the spectrum of the pulse in turn. The dependence of the spectral modulation on the gas temperature is investigated. We find that both spectral broadening and frequency red-shift are enhanced at low temperature. The degree of enhancement is found to be dependent on the pulse duration. Based on our findings, we propose a method for femtosecond pulse spectral broadening and few-cycle pulse generation via the molecular alignment.  相似文献   

14.
张义门  周拥华  张玉明 《中国物理》2007,16(5):1276-1279
In this paper the temperature dependence of responsivity and response time for 6H-SiC ultraviolet (UV) photodetector is simulated based on numerical model in the range from 300K to 900K. The simulation results show that the responsivity and the response time of device are less sensitive to temperature and this kind of UV photodetector has excellent temperature stability. Also the effects of device structure and bias voltage on the responsivity and the response time are presented. The thicker the drift region is, the higher the responsivity and the longer the response time are. So the thickness of drift region has to be carefully designed to make trade-off between responsivity and response time.  相似文献   

15.
An approach of lidar measurements of ocean temperature through measuring the spectral linewidth of the backscattered Brillouin lines is presented. An empirical equation for the temperature as a function of Brillouin linewidth and salinity is derived. Theoretical results are in good agreement with the experimental data. The equation also reveals the dependence of the temperature on the salinity and Brillouin linewidth.It is shown that the uncertainty of the salinity has very little impact on the temperature measurement.The uncertainty of this temperature measurement methodology is approximately 0.02 ℃.  相似文献   

16.
A new approach to measure the ocean temperature using Brillouin lidar   总被引:1,自引:0,他引:1  
An approach of lidar measurements of ocean temperature through measuring the spectral linewidth of the backscattered Brillouin lines is presented. An empirical equation for the temperature as a function of Brillouin linewidth and salinity is derived. Theoretical results are in good agreement with the experimental data. The equation also reveals the dependence of the temperature on the salinity and Brillouin linewidth. It is shown that the uncertainty of the salinity has very little impact on the temperature measurement. The uncertainty of this temperature measurement methodology is approximately 0.02℃.  相似文献   

17.
Based on the crystal plasticity theory and interatomic potential, in this paper a new thermo-elasto-plasticity constitutive model is proposed to study the behavior of metal crystals at finite temperature. By applying the present constitutive model, the stress-strain curves under uniaxial tension at different temperatures are calculated for the typical crystal Al, and the calculated results are compared with the experimental results. From the comparisons, it can be seen that the present theory has the capability to describe the thermo-elasto-plastic behavior of metal crystals at finite temperature through a concise and explicit calculation process.  相似文献   

18.
A high sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber is proposed in this work.In order to achieve high sensitivity and high stability,the gold layer is coated on the side-polished photonic crystal fiber to support surface plasmon resonance.The mixture of ethanol and chloroform is used as the thermosensitive liquid.The performances of the proposed temperature sensor were investigated by the finite element method(FEM).Simulation results indicate that the sensitivity of the temperature sensor is as high as 7.82 nm/℃.It has good linearity(R;=0.99803),the resolution of 1.1×10;℃,and the amplitude sensitivity of 0.1008℃;.In addition,the sizes of the small air hole and polishing depth have little influence on the sensitivity.Therefore,the proposed sensor shows a high structure tolerance.The excellent performance and high structure tolerance of the sensor make it an appropriate choice for temperature measurement.  相似文献   

19.
Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water(SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors' opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations.  相似文献   

20.
Isoscaling behaviour of the statistical emission fragments from the equilibrated sources with Z=30 and N=30, 33, 36 and 39 is investigated in the framework of the isospin-dependent lattice gas model. The dependences of isoscaling parameters α on source isospin asymmetry, temperature andfreeze-out density are studied, and the `symmetry energy' is deduced from isoscaling parameters. The results show that symmetry energy Csym is insensitive to the change of temperature but follows the power-law dependence on the freeze-out density ρ. The effect of strength of asymmetry of nucleon--nucleon interaction potential on the density dependence of the symmetry energy is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号