首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the experimental and theoretical results that may give an insight into the current status and possible prospects of the family of (sp1 + sp2) hybridized carbon allotropes: graphynes (GYs) and graphdiynes (GDYs), are reviewed. These allotropes, which can form a rich variety of 0D-3D forms and demonstrate a set of distinguished properties, have attracted now increased attention and research interest as promising materials, which can compete in various potential applications with “conventional” sp2 carbon systems such as fullerenes, nanotubes or graphene and meet the increasing requirements to carbon-based nanomaterials.It can be seen from the increasing number of publications in the last five years that the interest in GYs and GDYs rapidly grows, and a lot of new results have been obtained today. For example, a set of 0D-3D forms of GYs and GDYs have been successfully synthesized and (or) predicted theoretically, and their key properties (structural, mechanical, electronic etc.) have been measured or estimated from ab initio calculations. This gives a strong impetus to further progress in applications of GYs and GDYs as materials for nanoelectronics, energy storage, as anode materials in batteries, as membranes for facilitating selective gas separation etc. All these efforts promote the expansion of the palette of promising carbon materials and accelerate the development of modern carbon-based technologies.  相似文献   

2.
Two-dimensional (2D) materials possess nanoscale thickness with large aspect ratios on the other two dimensions. The ultrahigh surface-to-volume ratio of 2D materials is the most important property different from their bulk counterparts, and is beneficial for mass and heat transport, and ion diffusion. Among the various 2D materials, carbon-based materials have attracted tremendous attentions since the first explosive research on graphene. Therefore, they provide opportunities for applications in adsorption, catalysis, and electrical energy storage. The porous structure of such carbon materials is a key influence on the properties of these 2D materials. This review focuses on recent developments in synthesis strategies for 2D carbon-based materials, especially the preparation of carbon nanosheets and carbon-inorganic hybrids/composites nanosheets. The main factors influencing the porous structure of the material are discussed for each method. Applications of the materials are introduced, mainly in the fields of adsorption, heterogeneous catalysis, and electrical energy storage. Finally, the leading-edge issues of novel 2D carbon-based materials for the future are discussed.  相似文献   

3.
Owing to the remarkable physicochemical properties such as hydrophobicity, conductivity, elasticity, and light weight, graphene‐based materials have emerged as one of the most appealing carbon allotropes in materials science and chemical engineering. Unfortunately, pristine graphene materials lack functional groups for further modification, severely hindering their practical applications. To render graphene materials with special characters for different applications, graphene oxide or reduced graphene oxide has been functionalized with different organic agents and assembled together, via covalent binding and various noncovalent forces such as π–π interaction, electrostatic interaction, and hydrogen bonding. In this review, we briefly discuss the state‐of‐the‐art synthetic strategies and properties of organic‐functionalized graphene‐based materials, and then, present the prospective applications of organic‐functionalized graphene‐based materials in sample preparation.  相似文献   

4.
虞乐建  王苗  侯旭 《化学通报》2020,83(6):482-487,496
如何解决能源危机已经成为全人类亟待解决的重大挑战之一,而日益严峻的环境污染问题更驱使着人们对清洁能源的迫切需求。近年来,研究人员利用微纳加工技术制备不同维度的碳基材料以捕获周围环境所蕴藏的能量,被视为是一种开发可再生清洁能源的有效途径。本文主要从不同的能量利用形式出发,介绍了不同维度的碳材料用于纳米发电器件的研究进展,同时简要阐述了碳材料纳米发电器件在可穿戴器件、传感器等领域的潜在应用。  相似文献   

5.
Tremendous progress has been made in the field of electrochemical energy storage devices that rely on potassium-ions as charge carriers due to their abundant resources and excellent ion transport properties. Nevertheless, future practical developments not only count on advanced electrode materials with superior electrochemical performance, but also on competitive costs of electrodes for scalable production. In the past few decades, advanced carbon materials have attracted great interest due to their low cost, high selectivity, and structural suitability and have been widely investigated as functional materials for potassium-ion storage. This article provides an up-to-date overview of this rapidly developing field, focusing on recent advanced and mechanistic understanding of carbon-based electrode materials for potassium-ion batteries. In addition, we also discuss recent achievements of dual-ion batteries and conversion-type K−X (X=O2, CO2, S, Se, I2) batteries towards potential practical applications as high-voltage and high-power devices, and summarize carbon-based materials as the host for K-metal protection and possible directions for the development of potassium energy-related devices as well. Based on this, we bridge the gaps between various carbon-based functional materials structure and the related potassium-ion storage performance, especially provide guidance on carbon material design principles for next-generation potassium-ion storage devices.  相似文献   

6.
This endeavor presents state-of-the-art overview on polymer/carbon-based quantum dot nanocomposite. Carbon-based quantum dot (graphene quantum dot, carbon nanodot, and polymer dot) are ~10nm. Carbon-based quantum dot own exciting features such as tunable optoelectronic and photoluminescence properties, high stability, chemical inertness, low cytotoxicity, and biocompatibility owing to quantum confinement and edge effects. Main emphasis of article was to see the combined effect of polymer and carbon-based quantum dot in nanocomposite. Five major categories have been reviewed in this article including conjugated polymer/carbon-based quantum dot nanocomposite, epoxy/carbon-based quantum dot nanocomposite, polystyrene/carbon-based quantum dot nanocomposite, poly(dimethyl siloxane)/carbon-based quantum dot nanocomposite, and block copolymer/carbon-based quantum dot nanocomposite. The review also refers to cutting edge application areas of polymer/carbon-based quantum dot nanocomposite. Conducting polymer/carbon quantum dot nanocomposite has been integrated in energy storage devices, detectors, and electronic devices. These materials are also promising candidates for bulk heterojunction solar cells and light-emitting diodes. Another important use is the identification and removal of toxic metals. Functional materials have also been used for fluorescence imaging of live cells. Modification of carbon-based quantum dot and incorporation in appropriate polymer matrices can be adopted as powerful future tool enabling desired tailored applicability of nanocomposite in advance high performance technical applications.  相似文献   

7.
Graphdiyne(GDY)has the unique feature in the topological ordered arranged sp-and sp2-hybridized carbon atoms,thus deriving a series of 2D allotropes.Due to inhomogeneous π-bonding and carbon orbital overlap between different hybrid carbon atoms,GDY possesses a natural band gap with a Dirac cones structure.And GDY exhibits semiconductor property with a conductivity of 2.516×10-4 S/m at room temperature.The topological distribution of alkyne and benzene bonds of GDY makes its surface charge distribution extremely uneven,which produces high intrinsic activity for further modification.Its unique molecular structure endows the specific interaction with various species,such as ions,atoms,molecules and nanoparticles,showing excellent charge transport capability and unique advantages in mass transfer and energy conversion.From the view of the interaction principle between GDY and different compositions,we summarized the application of GDY-based materials in the fields of catalysis,energy conversion and storage,biological detection and so on.  相似文献   

8.
吴梦昊  戴军  曾晓成 《化学进展》2012,24(6):1050-1057
由于独特的成键特性,在不同温度和压强下,碳具有丰富的结构特性。除了实验上已发现各种同素异形体,理论计算也预言了丰富的新结构。在本文中,我们对第一性原理计算预言的三维碳同素异形体做了综述,特别地,我们着重关注了泡沫状的碳结构。碳泡沫主要由石墨片断以各种碳键连接而成,具体多孔结构及较大的表面积。另外,针对由低维碳结构,如碳富勒烯、纳米芽、纳米管及石墨烯等组成的三维碳超结构以及其他三维碳晶体我们也做了概述。这些新型碳结构有的由混杂的sp-sp2碳或者纯sp2碳组成(H-6, bct-4, C-20, K4等),有的质量密度比金刚石还大(C8, hP3, tl12, tp12等),有的可以由石墨在室温高压下转化而成(M碳, bct-4碳, W碳, Z碳等)。在这些预言的碳同素异形体中,有些在将来可能在实验室合成。  相似文献   

9.
纳米碳点是碳纳米材料家族的新成员,近年来在国内外受到广泛关注。与传统的荧光染料和半导体量子点发光材料相比,碳点不仅具有优异的光学性能及尺寸效应,且具有制备成本低廉、生物相容性好、易于官能化、能带结构可调等优势。本文在理清有关碳点概念的基础之上,介绍了碳点结构特征和制备策略,着重综述了纳米碳点在生物成像与诊疗、传感器件、催化、光电器件和能量存储领域的最新研究进展,探讨了碳点研究目前存在的问题及未来的发展方向。  相似文献   

10.
石墨烯量子点(GQDs)是一种新型碳基准零维材料,不但具有石墨烯的独特平面结构,同时具备碳点的量子限制效应和边界效应。GQDs具有独特的光学性质、低毒性、高荧光稳定性和高生物相容性,被广泛应用于检测、传感、催化、细胞成像、药物递送和污染治理等领域。GQDs的合成分为自上而下法和自下而上法,前者将大尺寸的石墨烯、石墨、碳材料切割成纳米级的量子点,后者使用不同的前驱体,通过水热法、热裂解法等方法合成石墨烯量子点。柠檬酸(CA)是一种重要的有机酸,室温下是白色结晶状粉末,是自下而上法合成GQDs的一种常用前驱体,近年来有许多关于以CA为前驱体合成不同GQDs的研究,以CA为前驱体合成的GQDs(CA-GQDs)在生物医药、荧光检测、成像等领域均有应用,具有较好的应用前景。对近年来基于CA的合成方法和具体应用进行了总结和回顾,旨在将现有CA-GQDs的相关成果尽可能汇总和展现,以对相关领域研究工作者提供一定参考,并对未来CA-GQDs较有前景的研究方向进行了展望。  相似文献   

11.
Scientific interest in carbon-based materials (CBMs) has grown dramatically over the past few decades. Due to a variety of atomic orbital hybrid forms (sp, sp2 and sp3 hybridization), carbon can form a variety of materials with diverse structures and characteristics. CBMs used as efficient catalyst supports show extensive promise in organic reactions, which is attributed to their structural similarity with organics, large specific surface area, chemical stability, and photocatalytic properties. This review presents the synthesis of CBM-supported palladium nanocatalysts based on impregnation, template methods, etc. The CBMs include activated carbon (AC), graphene, carbon nanotubes (CNTs), and their functionalized products, as supports for improving the activity and recyclability of simple Pd nanocatalysts. After surveying the literature where these catalysts have been utilized for carbon–carbon coupling reactions, there is a particular emphasis on Suzuki, Heck, and Sonogashira reactions. The catalytic mechanism of these Pd nanocatalysts (surface heterogeneous catalysis or homogeneous catalysis caused by Pd leaching) is discussed in detail, especially the effect of Pd leaching on the stability of the catalyst.  相似文献   

12.
Fluorescent graphene-based materials, labelled as a sort of fluorescent carbon-based nanomaterial, have drawn increasing attention in recent years. When the size and structure of graphene were controlled properly, photoluminescence was induced in graphene, resulting in the so-called fluorescent graphene (FG). FG has a size-, defect-, and wavelength-dependent luminescence emission, which is similar to traditional semiconductor-based quantum dots. Moreover, with excellent chemical stability, fine biocompatibility, low toxicity, up-conversion emission, pH-sensitivity and resistance to photobleaching, FG promises to offer substantial applications in numerous areas: bioimaging, photovoltaics, sensors, etc. Currently, research works have allowed FG to be produced by many approaches ranging from simple oxidation of graphene to cutting carbon sources and organic synthesis from small molecules. In this Feature Article, we summarize the reported fluorescent graphenes, with emphasis on their category, properties, synthesis and applications. Meanwhile, we give a perspective on their subsequent developments and compare the features of FG and other fluorescent carbon-based materials.  相似文献   

13.
自首次报道氮掺杂碳纳米管具有优良的氧还原催化性能以来,碳基无金属材料作为贵金属基电催化剂的潜在替代品而被寄予厚望。碳骨架中普遍存在的本征缺陷位点是影响碳材料物理化学性质的重要因素。特定碳缺陷的引入可以打破原本完整的sp2碳骨架而形成局部畸变,改变邻近碳原子的电荷或自旋密度分布,进而优化催化过程反应物和中间产物的吸附/脱附,提升活性位点的催化活性。因此,在碳基材料中设计创造特定的缺陷结构成为了制备高活性电催化剂的重要研究方向。本文对近年来碳基无金属电催化剂中本征缺陷的研究进展进行了综述,归纳了碳材料中常见的3类本征缺陷(边界、空位或孔洞、拓扑畸变)的制备策略和表征手段,并深入讨论了不同类型碳缺陷的构型和电子结构与其电催化活性的内在关系。最后,我们对目前本征碳缺陷在电催化领域的研究挑战和未来前景进行了总结和展望。  相似文献   

14.
进行了同素异形体概念的探讨。简要叙述了氢和硼2种典型非金属元素形成的各种同素异形体的存在、组成以及结构、制备和性质,首次将多种硼富勒烯、硼纳米管、硼单层平面等晶态硼的内容补充在硼的同素异形体中,并强调了计算化学对同素异形体的预测和现代科学技术发展对制备的作用及其在材料中的应用。  相似文献   

15.
具有高比表面积、良好导电性的多孔碳材料在超级电容器中有着广泛的应用前景. 大量的研究工作致力于通过物理或者化学手段合成并调控多孔材料的微观结构. 在众多多孔碳材料的制备方式中,氢氧化钾作为一种高效的活化剂,常用于制备具有良好孔径分布和高比表面积多孔碳电极材料. 本文主要结合作者课题组的研究工作,着重概述利用氢氧化钾活化sp2碳纳米材料制备多孔碳材料的机理过程、结构形貌的转变以及所得材料的电化学性能,希望对发展新型的高性能基多孔碳材料的超级电容器电极材料有所帮助.  相似文献   

16.
Heteroatom doped carbon dots(CDs) with distinct merits are of great attractions in various fields such as solar cells, catalysis, trace element detection and photothermal therapy. In this work, we successfully synthesized blue-fluorescence and photostability manganese-doped carbon dots(Mn-CDs) with a quantum yield up to 7.5%, which was prepared by a facile one-step hydrothermal method with sodium citrate and manganese chloride. The Mn-CDs is the high mono-dispersity, uniform spherical nanoparticles. The Mn element plays a critical role in achieving a high quantum yield in synthesis of carbon dots, which was confirmed by the structure analysis using XPS and FTIR. Spectroscopic investigations proved that the decent PLQY and luminescence properties of Mn-CDs are due to the heteroatom doped, oxidized carbon-based surface passivation. In addition, the Mn-CDs are demonstrated as promising fluorescent sensors for iron ions with a linear range of 0–500 mmol/L and a detection limit of2.1 nmol/L(turn-off), indicating their great potential as a fluorescent probe for chemical sensing.  相似文献   

17.
梁骥  闻雷  成会明  李峰 《电化学》2015,21(6):505
电化学储能材料是电化学储能器件发展及性能提高的关键之一. 碳材料在各种电化学储能体系中都起到了极为重要的作用,特别是近期出现的各类新型碳材料为电化学储能的发展带来了新动力,并展现了广阔的应用前景. 本文综述了碳材料,特别是以碳纳米管和石墨烯为代表的纳米碳材料,在典型电化学储能器件(锂离子/钠离子电池、超级电容器和锂硫电池等)、柔性电化学储能和电化学催化等领域的研究进展,并对碳材料在这些领域的应用前景进行了展望.  相似文献   

18.
Wanekaya AK 《The Analyst》2011,136(21):4383-4391
This article reviews applications of nanoscale carbon-based materials in heavy metal sensing and detection. These materials, including single-walled carbon nanotubes, multi-walled carbon nanotubes and carbon nanofibers among others, have unique and tunable properties enabling applications in various fields spanning from health, electronics and the environment sector. Specifically, we highlight the unique properties of these materials that enable their applications in the sorption and preconcentration of heavy metals ions prior to detection by spectroscopic, chromatographic and electrochemical techniques. We also discuss their distinct properties that enable them to be used as novel electrode materials in sensing and detection. The fabrication and modification of these electrodes is discussed in detail and their applications in various electrochemical techniques such as voltammetric stripping analysis, potentiometric stripping analysis, field effect transistor-based devices and electrical impedance are critically reviewed. Perspectives and futures trends in the use of these materials in heavy metal sensing and detection will also be highlighted.  相似文献   

19.
Sample preparation techniques have always been considered as a complex issue in the analytical process. Most of the sample preparation techniques show a lack of selectivity. Molecularly imprinted polymer (MIP) is a synthetic approach for sample preparation technique that has the ability of selective extractions. Generally, MIPs are selective sorbent, MIPs are capable of binding a molecule or its geometrical analogues. The imprinted polymers own particular voids exclusively framed for the aimed target analytes. These MIPs have been synthesized through a complex route of polymerization using a dedicated crosslinker, a template and function bound specific monomers (mainly interacting with the template). Despite having various pros like selectivity, morphological predictability, chemical & thermal stability, points alike binding site heterogeneity, partial template removal, and limited application pose a challenge. In this regard, a relatively newer carbon-based MIP method is explored as the molecular imprinting technique in various environmental samples. This paper describes the current scenario in the field of molecular-based imprinting technology using different carbon engrained materials and highlights the latest applications in this field and suggest proposals for the prospect in the area of the MIP.  相似文献   

20.
Electrocatalytic water splitting has been considered as a promising strategy for the sustainable evolution of hydrogen energy and storage of intermittent electric energy. Efficient catalysts for electrocatalytic water splitting are urgently demanded to decrease the overpotentials and promote the sluggish reaction kinetics. Carbon-based composites, including heteroatom-doped carbon materials, metals/alloys@carbon composites, metal compounds@carbon composites, and atomically dispersed metal sites@carbon composites have been widely used as the catalysts due to their fascinating properties. However, these electrocatalysts are almost powdery form, and should be cast on the current collector by using the polymeric binder, which would result in the unsatisfied electrocatalytic performance. In comparison, a self-supported electrode architecture is highly attractive. Recently, self-supported metal–organic frameworks (MOFs) constructed by coordination of metal centers and organic ligands have been considered as suitable templates/precursors to construct free-standing carbon-based composites grown on conductive substrate. MOFs-derived carbon-based composites have various merits, such as the well-aligned array architecture and evenly distributed active sites, and easy functionalization with other species, which make them suitable alternatives to non-noble metal-included electrocatalysts. In this review, we intend to show the research progresses by employment of MOFs as precursors to prepare self-supported carbon-based composites. Focusing on these MOFs-derived carbon-based nanomaterials, the latest advances in their controllable synthesis, composition regulation, electrocatalytic performances in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting (OWS) are presented. Finally, the challenges and perspectives are showed for the further developments of MOFs-derived self-supported carbon-based nanomaterials in electrocatalytic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号