首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
(Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 (M=Co, Ni and Zn) have been synthesized and investigated by means of X-ray diffraction, scanning electron microscope, electrical resistivity and magnetic susceptibility measurements. X-ray diffraction patterns show that all studied samples contain the nearly single ‘1212’ phase. They crystallize in a tetragonal unit cell with a=3.8028-3.8040 Å and c=12.0748-12.1558 Å. In (Tl0.5Pb0.5)Sr2Ca(Cu2−xMx)O7 system (M=Co or Ni), the superconducting critical temperature Tc decreases linearly with both Co and Ni concentrations and the rate of Tc decrease is around −6.5 and −7.0 K/at%, respectively. For (Tl0.5Pb0.5)Sr2Ca (Cu2−xZnx)O7 system, the dependence of Tc on the Zn dopant concentration deviates from a linear behavior and the Zn substitution suppresses Tc much less (−2.5 K/at%) than the Co and Ni substitutions. The suppression in Tc in Co and Ni doped samples are attributed to the magnetic pair-breaking mechanism and the reduction in the carrier concentration. The suppression of Tc in Zn doped samples is not caused by the reduction in carrier concentration which should remain constant, but rather due to nonmagnetic pair-breaking mechanism induced by disorder as well as the filling of the local Cu dx2y2 state due to the full d band of Zn ions.  相似文献   

2.
We report the temperature dependence of susceptibility for various pressures, magnetic fields and constant magnetic field of 5 T with various pressures on La2−2xSr1+2xMn2O7 single crystal to understand the effectiveness of pressure and magnetic field in altering the magnetic properties. We find that the Curie temperature, Tc, increases under pressure (dTc/dP=10.9 K/GPa) and it indicates the enhancement of ferromagnetic phase under pressure up to 2 GPa. The magnetic field dependence of Tc is about 26 K for 3 T. The combined effect of pressure and constant magnetic field (5 T) shows dTc/dP=11.3 K/GPa and the peak structure is suppressed and broadened. The application of magnetic field of 5 T realizes 3D spin ordered state below Tc at atmospheric pressure. Both peak structure in χc and 3D spin ordered state are suppressed, and changes to 2D-like spin ordered state by increase of pressure. These results reveal that the pressure and the magnetic field are more competitive in altering the magnetic properties of bilayer manganite La1.25Sr1.75Mn2O7 single crystal.  相似文献   

3.
A series of polycrystalline samples of Mg1−xPbxB2 (0≤x≤0.10) were prepared by a solid state reaction method and their structure, superconducting transition temperature and transport properties were investigated by means of X-ray diffraction (XRD) and resistivity measurements. Mg1−xPbxB2 compounds were shown to adopt an isostructural AlB2-type hexagonal structure in a relatively small range of lead concentration, x≤0.01. The crystalline lattice constants were evaluated and were found to exhibit slight length compression as x increases. The superconducting transition temperature (Tc) steadily decreases with Pb doping. It is suggested that the mechanism of superconductivity reduction by lead doping can be attributed to the chemical pressure effect.  相似文献   

4.
Measurements of the a.c.susceptibility (χ=χ′+iχ″) have been made on the Mg substituted high TC superconducting system, CuBa2(MgxCa1−x)3Cu4O12−y (Cu-1234) with x=0, 0.10 & 0.20, at different values of the a.c.field amplitude. Estimates of the intergranular critical current density(JC) made from the field dependent χ″-T curves show an improvement in the Mg-substituted Cu-1234 system. Results have been analysed in the light of the crystal structure and the superconducting anisotropy factor (γab/ξc) of the Cu-1234 system. Lower superconducting anisotropy emanating from Mg substitution has been found to be significant, resulting in better superconducting properties.  相似文献   

5.
The superconducting transition temperatures Tc of face-centered cubic Al1−x-Lix alloys (x=0-0.10) exhibit a minimum near x=0.03 (3 at.% Li). The McMillan strong-coupling Tc equation yields a similar trend of the electron-phonon coupling constant λ. Meanwhile, the density of states at the Fermi level N(0) decreases monotonically with increasing x. It appears that Tc drops initially due to a reduced N(0), which is then overtaken by alloying-enhanced factors of phonon or electron-phonon interaction.  相似文献   

6.
To study the factors affecting the dielectric and piezoelectric properties of bismuth-containing complex perovskites, the solid solution (1−x)Pb(Mg1/3Nb2/3)O3-xBi(Mg2/3Nb1/3)O3 was prepared by the solid state reaction method and its dielectric and piezoelectric properties were investigated. It is found that (1) at room temperature, the nonlinearity of the DE-loop for Pb(Mg1/3Nb2/3)O3 is completely suppressed at a rather low x (<5%); (2) dielectric constant versus temperature curves deviate from the Curie-Weiss law at a temperature Td much higher than the dielectric constant peak temperature Tm and TmTd decreases considerably with increasing x; and (3) frequency dispersion ΔTm=Tm (1 MHz)−Tm (10 kHz) increases with increasing x. Possible factors responsible for the variation of the dielectric and piezoelectric properties with x are discussed.  相似文献   

7.
The solid solution (Ce1−xLax)PtGa has been studied through X-ray diffraction, magnetization (σ(B)), magnetic susceptibility (χ(T)), electrical resistivity (ρ(T)), magnetoresistivity (MR) and heat capacity (CP(T)) measurements. The Néel temperature (TN=3.3 K) for CePtGa is lowered upon La substitution as observed from χ(T) and ρ(T) measurements. The Kondo temperature TK as calculated from MR measurements is comparable to TN and also decreases with La substitution. The volume dependence of TK is in accordance with the compressible Kondo lattice model and a Doniach diagram of the results is presented. CP(T) measurements are presented for CePtGa, Ce0.2La0.8PtGa and LaPtGa and the results are discussed in terms of the electronic and magnetic properties. Other features of interest are anomalies in ρ(T) and CP(T) due to crystalline electric field effects and metamagnetism as observed in σ(B) studies for samples with 0≤x≤ 0.3.  相似文献   

8.
Magnetic susceptibility, χ(T), is investigated in ceramic La1−xSrxMn1−yFeyO3 (LSMFO) samples with x=0.3 and y=0.15−0.25. A ferromagnetic (FM) transition observed in LSMFO is accompanied with an appreciable decrease of the transition temperature with increasing y, which is connected to breaking of the FM double-exchange interaction by doping with Fe. Strong magnetic irreversibility, observed in low (B=10 G) field, gives evidence for frustration of the magnetic state of LSMFO. The FM transition, which is expanded with increasing B, is more pronounced in the samples with y=0.15-0.20 and broadens considerably at y=0.25, where the irreversibility is increased. Well above the transition, χ(T) exhibits a Curie-Weiss asymptotic behavior, yielding very large values of the effective Bohr magneton number per magnetic ion, incompatible with those of Mn or Fe single ions. At y=0.15 and 0.20 a critical behavior of χ−1(T)∼(T/TC−1)γ in the region of the FM transition is characterized by influence of two different magnetic systems, a 3D percolative one with γ=γp≈1.8 and TC=TC(p), and a non-percolative 3D Heisenberg spin system, with γ=γH≈1.4 and TC=TC(H), where TC(p)<TC(H). At y=0.25 the percolative contribution to the critical behavior of χ(T) is not observed. The dependence of χ on T and y gives evidence for phase separation, with onset already near the room temperature, leading to generation of nanosize FM particles in the paramagnetic host matrix of LSMFO. The ferromagnetism of LSMFO is attributable to percolation over the system of such particles and generation of large FM clusters, whereas the frustration is governed presumably by a system of smaller weakly-correlated magnetic units, which do not enter the percolative FM clusters.  相似文献   

9.
The effects of Fe substitution on the structure, magnetic properties, magnetocaloric effect and positive magnetoresistance (MR) effect in antipervoskite compounds SnCMn3−xFex (x=0.05-0.20) have been investigated systematically. Partial substitution of Fe for Mn leads to the monotonic reduction in both the Curie temperature TC and saturated magnetization (MS). It can be attributed to the reduction of electronic density of state at the Fermi energy by Fe-doping. The maximum values of magnetic entropy change (−ΔSM) and positive MR gradually decrease as x increases, due to the broadening of magnetic phase transition. The refrigerant capacity increases initially with x≤0.05, then decreases gradually as x increases further, which is suggested to originate from the competition between the decreasing −ΔSM and broadening temperature span. Our result indicates that the chemical doping on Mn site is an effective method for manipulating the properties of antiperovskite compounds AXMn3.  相似文献   

10.
Superconducting transition temperatures (Tc) and room temperature lattice parameters (αo) are reported for the A-15 pseudo-binary systems Mo3Ir1−χRuχ and Mo3Os1−χRuχ (0 ≤ x ≤ 0.8). If Mo3Ru could be synthesized in the A-15 structure, its Tc and αo are predicted to be 10–11°K and 4.95 Å, respectively.  相似文献   

11.
In a weak magnetic field LaMnO3+δ exhibits at δ=0.065 below the paramagnetic-to-ferromagnetic (FM) Curie temperature, TC, a mixed (spin-glass and FM) phase followed by a frustrated FM phase at δ between 0.100 and 0.154. The same behavior is observed in La1−xCaxMnO3 with x between 0 and 0.3. This can be understood by the similar variation of the Mn4+ concentration, c between ≈0.13 and 0.34, in both materials when x or δ is increased. On the other hand, considerable differences are found between these compounds in the values of the magnetic irreversibility, in the dependencies of TC(c) and the magnetic susceptibility, χ(c), as well as in the critical behavior of χ(T) near TC. These differences can be explained by distortions of the cubic perovskite structure, by the reduced lattice disorder and by the more homogeneous hole distribution in LaMnO3+δ than in La1−xCaxMnO3.  相似文献   

12.
Pseudobinary high Pr-content Tb1−xPrx(Fe0.4Co0.6)1.93 (0.70≤x≤1.00) magnetostrictive alloys have been fabricated by a melt-spinning method. The effects of the composition, spinning, and annealing processes on the structure, thermal stability, and magnetic properties are investigated. At a wheel speed of v≤30 m/s, the as-spun ribbons consist of a mixture of (Tb,Pr)(Fe,Co)2 cubic Laves phase and some non-cubic phases. A single (Tb,Pr)(Fe,Co)2 phase with MgCu2-type structure is formed with the process for the speed of v≥35 m/s and subsequent annealing at 500 °C for 30 min. The lattice parameter of the Tb1−xPrx(Fe0.4Co0.6)1.93 Laves phase increases from 0.7354 nm for x=0.70 to 0.7384 nm for x=1.00 and approximately follows the linear Vegard's law. The Curie temperature decreases, while the saturation magnetization increases as increasing Pr content. The Pr-rich alloys possess the relatively lower coercivity and the faster saturation of magnetostriction as compared with the Tb-rich alloys, which can be understood by their lower magnetic anisotropy.  相似文献   

13.
The effect of Pr-doping on structural, electronic transport, magnetic properties in perovskite molybdates Sr1−xPrxMoO3 (0≤x≤0.15) has been investigated. The Pr-doping at Sr-site does not change the space group of the samples, but decreases the lattice parameter a. The magnitude of resistivity ρ increases initially (x≤0.08) and then decreases with further increasing Pr-doping level x and ρ(T) behaves as T2 and T dependence in the low-temperature range blow T* and high-temperature range of 150 K<T<350 K, related to the electron-electron (e-e) and electron-phonon (e-ph) scattering, respectively. The magnetic susceptibility χ value of the sample increases with increasing x and the χ(T) curve for all samples can be well described by the model of exchange-enhanced paramagnetism. The specific heat magnitude in the low-temperature region increases with increasing Pr-doping level. The specific heat value agrees with the classical Dulong-Petit phonon specific heat, Ccl=3kBrNA=124.7 J/mol K in the high-temperature region and the temperature dependence of the specific heat can be well described by the formula Cp(T)/T=γe+βpT2 in the low-temperature range. These behaviors can be explained by the competition between the increase in the density of state (DOS) at Fermi energy level and the disorder effect due to Pr-doping.  相似文献   

14.
Measurements of all the six principal elastic constants of single-crystal rutile were made in the temperature range of 298–583°K. The temperature derivatives (in kb/deg) at 298°K are: dC11/dT = − 0·510, dC33/dT = − 0·900, dC44/dT = − 0·220, dC66dT = − 0·458, dC12/dT = − 0·580, and dC13/dT = − 0·330. Measurements of the four modes, C11, C′ = (C11C12)/2, C66, and C110L = (C11 + C12 + 2C66)/2, were extended to 4°K. Two features related to the temperature and volume dependences of the lattice vibrational frequencies are revealed: first, all the measured dClj/dT except dC′/dT become less negative with increasing temperature above 100°K. Second, dC′/dT is positive at all temperatures but decreases with increasing temperature at temperatures > 300°K. Indirectly shown is that (∂C′/∂P)T having a value of − 1·32 at 298°K, decreases with decreasing temperatures. The significance of this latter fact is discussed in light of the computation of Grüneisen mode γ's from the acoustic (∂Cij/∂P)T values, and the results are compared with the γ (αv) values obtained by Kirby from thermal expansion data. It is concluded that the large increase in γ(αv) at low temperatures cannot be ascribed to a large temperature dependence of (∂C′/∂P)T. Therefore, Kirby's explanation, that the large increase in γ(αv) is caused by the large volume dependence of the acoustical mode frequencies, is not substantiated.  相似文献   

15.
Some of the compositions of the half-doped rare-earth manganates, La0.5−xLnxCa0.5MnO3 (Ln=Nd, Pr) and Nd0.5Ca0.5−xSrxMnO3 with relatively small A-cation radii, 〈rA〉, show an unusual behavior wherein they become ferromagnetic (FM) on cooling the charge ordered (CO) state (TCO>TC). With increase in 〈rA〉, however, the TC becomes greater than TCO. Thus, plots of TC and TCO against 〈rA〉 for La0.5−xLnxCa0.5MnO3 (Ln=Nd, Pr) and Nd0.5Ca0.5−xSrxMnO3 show cross-over from the TCO>TC regime to the TC>TCO regime around 〈rA〉 values of 1.195±0.003 and 1.200±0.005 Å, respectively. Between TC and TCO, the CO and FM phases are likely to coexist. In Nd0.5Ca0.5Mn1−xMxO3 (M=Cr, Ru), TCO>TC when x≤0.10, suggesting the re-entrant nature of the FM transition.  相似文献   

16.
The critical parameters provide important information concerning the interaction mechanisms near the paramagnetic-to-ferromagnetic transition. In this paper, we present a thorough study for the critical behavior of La0.7A0.3(Mn1−xBx)O3 (A=Sr; B=Ti and Al; x=0.0 and 0.05) polycrystalline samples near ferromagnetic-paramagnetic phase transition temperature by analyzing isothermal magnetization data. We have analyzed our dc-magnetization data near the transition temperature with the help of the modified Arrot plot, Kouvel-Fisher method. We have determined the critical temperature TC and the critical parameters β, γ and δ. With the values of TC, β and γ, we plot M×(1−T/TC)β vs. H×(1−T/TC)γ. All the data collapse on one of the two curves. This suggests that the data below and above TC obey scaling, following a single equation of state. Critical parameters for x=0 and xTi=0.05 samples are between those predicted for a 3D-Heisenberg model and mean-field theory and for xAl=0.05 samples the values obtained for the critical parameters are close to those predicted by the mean-field theory.  相似文献   

17.
Takashi Nagatani 《Physica A》2007,386(1):381-387
We study the dynamical behavior of vehicular traffic through a sequence of traffic lights positioned self-similarly on a highway, where all traffic lights turn on and off simultaneously with cycle time Ts. The signals are positioned self-similarly by Cantor set. The nonlinear-map model of vehicular traffic controlled by self-similar signals is presented. The vehicle exhibits the complex behavior with varying cycle time. The tour time is much lower such that signals are positioned periodically with the same interval. The arrival time T(x) at position x scales as (T(x)-x)∝xdf, where df is the fractal dimension of Cantor set. The landscape in the plot of T(x)−x against cycle time Ts shows a self-affine fractal with roughness exponent α=1−df.  相似文献   

18.
We carefully studied the nonsuperconducting sample of the magneto-superconducting RuSr2(Eu1−xCex)Cu2O10−δ series with composition RuSr2EuCeCu2O10−δ. This compound seems to exhibit a complex magnetic state as revealed by host of techniques like resistivity, thermopower, magnetic susceptibility, and MR measurements. The studied compound exhibited ferromagnetic like M(H) loops at 5, 20, and 50 K, and semiconductor like electrical conduction down to 5 K, with −MR7 T of up to 4% at low temperatures. The −MR7 T decreases fast above 150 K and monotonically becomes close to zero above say 230 K. Below, 150 K −MR7 T decreases to around 3% monotonically down to 75 K, with further increase to 4% at around 30 K and lastly having a slight decrease below this temperature. The thermopower S(T) behavior closely followed the −MR7 T steps in terms of d(S/T)/dT slopes. Further, both MR7 T steps and d(S/T)/dT slopes are found in close vicinity to various magnetic ordering temperatures (Tmag) of this compound.  相似文献   

19.
The effect of transition element (TE=Cr, Fe, Co, Ni, Cu, Zn) doping on the electronic transport and magnetic properties in the bilayer manganite La1.4Sr1.6Mn2O7 is studied for the same dopant concentration fixed at 2%. Doping does not cause change in structure but different behavior in magnetic and transport properties. Except for Cr, all the other dopings significantly shift the magnetic transition temperature (TC) to a lower temperature. Associated with such a decrease, the insulator-metal transition temperature (TIM) decreases and the peak resistivity (ρp) at TIM increases. Cr doping enhances TC and TIM as well as decreases ρp. Fe doping apparently has a stronger effect than Co and Ni doping. It is also indicated that Cu doping causes an anomalously large increase in ρp. These behaviors are compared with those observed in other bilayer manganites such as La1.2Sr1.8Mn2O7 as well as in La0.7Ca0.3Mn1−xTExO3.  相似文献   

20.
We present our recent results on the temperature dependence of current-voltage characteristics for polycrystalline Y1−xPrxBa2Cu3O7−δ superconductors with x=0.0, 0.1 and 0.3. The experimental results are found to be reasonably well fitted for all samples by a power like law of the form V=R(IIc)a(T). Here, we assume that a(T)=1+Φ0IC(T)/2πkBT and IC(T)=IC(0)(1−T/TC)3/2 for the temperature dependences of the power exponent and critical current, respectively. According to the theoretical interpretation of the obtained results, nonlinear deviation of our current-voltage characteristics curves from Ohmic behavior (with a(TC)=1) below TC is attributed to the manifestation of dissipation processes. They have a characteristic temperature Tp defined via the power exponent as a(Tp)=2 and are related to the current induced depinning of Abrikosov vortices. Both TC(x) and Tp(x) are found to decrease with an increase of Pr concentration x reflecting deterioration of the superconducting properties of the doped samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号