首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We solve the problem of the behavior of a gas plasma in a half-space analytically using the kinetic equation with the collision rate proportional to the modulus of the electron velocity. The plasma is in a variable external electric field. The specular reflection of electrons from the plasma boundary is used as a boundary condition. We use the solution to find the screened electric field. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 153, No. 3, pp. 409–421, December, 2007.  相似文献   

2.
We consider the first mixed problem for the Vlasov–Poisson equations with an external magnetic field in a half-space. This problem describes the evolution of the density distributions of ions and electrons in a high temperature plasma with a fixed potential of electric field on a boundary. For arbitrary potential of electric field and sufficiently large induction of external magnetic field, it is shown that the characteristics of the Vlasov equations do not reach the boundary of the halfspace. It is proved the existence and uniqueness of classical solution with the supports of charged-particle density distributions at some distance from the boundary, if initial density distributions are sufficiently small.  相似文献   

3.
In this paper, we study the asymptotic behavior for the incompressible anisotropic Navier–Stokes equations with the non-slip boundary condition in a half space of ${\mathbb{R}^3}$ when the vertical viscosity goes to zero. Firstly, by multi-scale analysis, we formally deduce an asymptotic expansion of the solution to the problem with respect to the vertical viscosity, which shows that the boundary layer appears in the tangential velocity field and satisfies a nonlinear parabolic–elliptic coupled system. Also from the expansion, it is observed that away from the boundary the solution of the anisotropic Navier–Stokes equations formally converges to a solution of a degenerate incompressible Navier–Stokes equation. Secondly, we study the well-posedness of the problems for the boundary layer equations and then rigorously justify the asymptotic expansion by using the energy method. We obtain the convergence results of the vanishing vertical viscosity limit, that is, the solution to the incompressible anisotropic Navier–Stokes equations tends to the solution to degenerate incompressible Navier–Stokes equations away from the boundary, while near the boundary, it tends to the boundary layer profile, in both the energy space and the L space.  相似文献   

4.
In this paper, we consider the Dirichlet and impedance boundary value problems for the Helmholtz equation in a non‐locally perturbed half‐plane. These boundary value problems arise in a study of time‐harmonic acoustic scattering of an incident field by a sound‐soft, infinite rough surface where the total field vanishes (the Dirichlet problem) or by an infinite, impedance rough surface where the total field satisfies a homogeneous impedance condition (the impedance problem). We propose a new boundary integral equation formulation for the Dirichlet problem, utilizing a combined double‐ and single‐layer potential and a Dirichlet half‐plane Green's function. For the impedance problem we propose two boundary integral equation formulations, both using a half‐plane impedance Green's function, the first derived from Green's representation theorem, and the second arising from seeking the solution as a single‐layer potential. We show that all the integral equations proposed are uniquely solvable in the space of bounded and continuous functions for all wavenumbers. As an important corollary we prove that, for a variety of incident fields including an incident plane wave, the impedance boundary value problem for the scattered field has a unique solution under certain constraints on the boundary impedance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The present paper is concerned with the quasi-neutral and zero-viscosity limits of Navier–Stokes–Poisson equations in the half-space. We consider the Navier-slip boundary condition for velocity and Dirichlet boundary condition for electric potential. By means of asymptotic analysis with multiple scales, we construct an approximate solution of the Navier–Stokes–Poisson equations involving two different kinds of boundary layer, and establish the linear stability of the boundary layer approximations by conormal energy estimate.  相似文献   

6.
In this paper, we present a bipolar hydrodynamic model from semiconductor devices and plasmas, which takes the form of bipolar isentropic Euler–Poisson with electric field and frictional damping added to the momentum equations. We firstly prove the existence of the stationary solutions. Next, we present the global existence and the asymptotic behavior of smooth solutions to the initial boundary value problem for a one-dimensional case in a bounded domain. The result is shown by an elementary energy method. Compared with the corresponding initial data case, we find that the asymptotic state is the stationary solution.  相似文献   

7.
We consider a dynamically-consistent analytical model of a 3D topographic vortex. The model is governed by equations derived from the classical problem of the axisymmetric Taylor–Couette flow. Using linear expansions, these equations can be reduced to a differential sixth-order equation with variable coefficients. For this differential equation, we formulate a boundary value problem, which has a number of issues for numerical solving. To avoid these issues and find the eigenvalues and eigenfunctions of the boundary value problem, we suggest a modification of the invariant imbedding method (the Riccati equation method). In this paper, we show that such a modification is necessary since the boundary conditions possess singular matrices, which sufficiently complicate the derivation of the Riccati equation. We suggest algebraic manipulations, which permit the initial problem to be reduced to a problem with regular boundary conditions. Also, we propose a method for obtaining a numerical solution of the matrix Riccati equation by means of recurrence relations, which allow us to obtain a matrizer converging to the required eigenfunction. The suggested method is tested by calculating the corresponding eigenvalues and eigenfunctions, and then, by constructing fluid particle trajectories on the basis of the eigenfunctions.  相似文献   

8.
We construct and justify the asymptotics of a boundary layer solution of a boundary value problem for a singularly perturbed second-order ordinary differential equation for the case in which the degenerate (finite) equation has an identically double root. A specific feature of the asymptotics is the presence of a three-zone boundary layer. The solution of the boundary value problem is a stationary solution of the corresponding parabolic equation. We prove the asymptotic stability of this solution and find its attraction domain.  相似文献   

9.
This article considers the fluid model for the discharge of plasma particle species in display technology. The fluid equations are coupled with Poisson's equation, which describes the effect of the charged particles on the electric field. The diffusion and mobility coefficients for the positive ion particles depend on the electric field, while those for the electrons depend on the electron mean energy. The reaction rates are proportional to the products of the densities of the reacting particles involved in the particular ionization, conversion or recombination reactions. Moreover, the ionization coefficients are dependent on the electric field, which varies spatially and temporally. The main ionization and discharge reactions are described by an initial-boundary value problem for a system of coupled parabolic–elliptic partial differential equations. The system is first analyzed by upper–lower solution method. By means of the a priori bounds obtained for an arbitrary time, the existence of solution for the initial-boundary value problem is proved in an appropriate Hölder space.  相似文献   

10.
We study the free boundary problem for a plasma–vacuum interface in ideal incompressible magnetohydrodynamics. Unlike the classical statement when the vacuum magnetic field obeys the div-curl system of pre-Maxwell dynamics, to better understand the influence of the electric field in vacuum, we do not neglect the displacement current in the vacuum region and consider the Maxwell equations for electric and magnetic fields. Under the necessary and sufficient stability condition for a planar interface found earlier by Trakhinin, we prove an energy a priori estimate for the linearized constant coefficient problem. The process of derivation of this estimate is based on various methods, including a secondary symmetrization of the vacuum Maxwell equations, the derivation of a hyperbolic evolutionary equation for the interface function, and the construction of a degenerate Kreiss-type symmetrizer for an elliptic-hyperbolic problem for the total pressure.  相似文献   

11.
In semiconductors the distributions of electrons satisfy a non-linear Boltzmann–Vlasov equation. We consider the half-space problem arising in the study of boundary layers when the mean free path tends to zero. We prove the existence and the uniqueness of the solution for any prescribed entering distribution. We establish that this solution tends towards a Fermi–Dirac distribution exponentially fast.  相似文献   

12.
For a degenerate system of equations such as the equations of motion of immiscible fluids in porous media, we study the solvability of an initial–boundary value problem. Using the process of capillary imbibition of a wetting fluid as an example, we study a class of self-similar solutions with degeneration on the movable boundary and on the entry into the porous layer. The considered problem can be reduced to the analysis of properties of a nonlinear operator equation. For the classical solution of the original problem, we prove existence and uniqueness theorems.  相似文献   

13.
ASINGULARSINGULARLY-PERTURBEDBOUNDARYVALUEPROBLEM¥LinWuzhong(林武忠);WangZhiming(汪志鸣)(EastChinaNormalUniversity,上海华东师范大学,邮编:2000...  相似文献   

14.
An analysis has been presented to investigate the effect of temperature-dependent viscosity on non-Darcy MHD mixed convective heat transfer past a porous medium by taking into account of Ohmic dissipation and non-uniform heat source/sink. Thermal boundary layer equation takes into account of viscous dissipation and Ohmic dissipation due to transverse magnetic field and electric field. The governing fundamental equations are first transformed into system of ordinary differential equations using self-similarity transformation and are solved numerically by using the fifth-order Runge–Kutta–Fehlberg method with shooting technique for various values of the physical parameters. The effects of variable viscosity, porosity, Eckert number, Prandtl number, magnetic field, electric field and non-uniform heat source/sink parameters on velocity and temperature profiles are analyzed and discussed. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results on the development of the local skin-friction co-efficient and local Nusselt number with non-uniform heat source/sink are tabulated for various physical parameters to show the interesting aspects of the solution.  相似文献   

15.
We study the initial–boundary value problem for the Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing boundary conditions. We first prove the existence of weak solutions of the linearized equation in an interval with absorbing boundary conditions. Moreover, the weak solution converges to zero exponentially in time. Then we extend the above results to the fully nonlinear Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing boundary conditions; the existence and the longtime behavior of weak solutions. Finally, we prove that the weak solution is actually a classical solution by showing the hypoellipticity of the solution away from the grazing set and the Hölder continuity of the solution up to the grazing set.  相似文献   

16.
The numerical approach for computer simulation of femtosecond laser pulse interaction with a semiconductor is considered under the formation of 3D contrast time-dependent spatiotemporal structures. The problem is governed by the set of nonlinear partial differential equations describing a semiconductor characteristic evolution and a laser pulse propagation. One of the equations is a Poisson equation concerning electric field potential with Neumann boundary conditions that requires fulfillment of the well-known condition for Neumann problem solvability. The Poisson equation right part depends on free-charged particle concentrations that are governed by nonlinear equations. Therefore, the charge conservation law plays a key role for a finite-difference scheme construction as well as for solvability of the Neumann difference problem. In this connection, the iteration methods for the Poisson equation solution become preferable than using direct methods like the fast Fourier transform. We demonstrate the following: if the finite-difference scheme does not possess the conservatism property, then the problem solvability could be broken, and the numerical solution does not correspond to the differential problem solution. It should be stressed that for providing the computation in a long-time interval, it is crucial to use a numerical method that possessing asymptotic stability property. In this regard, we develop an effective numerical approach—the three-stage iteration process. It has the same economic computing expenses as a widely used split-step method, but, in contrast to the split-step method, our method possesses conservatism and asymptotic stability properties. Computer simulation results are presented.  相似文献   

17.
In this work, we use He’s variational iteration method (VIM) to find approximate Green’s functions for a vector equation for the electric field with anisotropic dielectric permittivity and magnetic permeability. We present numerical examples which show that an approximate solution of an initial value problem (IVP) for a vector equation can be obtained by using these approximate Green’s functions.  相似文献   

18.
The Korteweg–de Vries (KdV) equation is known as a model of long waves in an infinitely long canal over a flat bottom and approximates the 2-dimensional water wave problem, which is a free boundary problem for the incompressible Euler equation with the irrotational condition. In this article, we consider the validity of this approximation in the case of the presence of the surface tension. Moreover, we consider the case where the bottom is not flat and study an effect of the bottom to the long wave approximation. We derive a system of coupled KdV like equations and prove that the dynamics of the full problem can be described approximately by the solution of the coupled equations for a long time interval. We also prove that if the initial data and the bottom decay at infinity in a suitable sense, then the KdV equation takes the place of the coupled equations.  相似文献   

19.
We consider a singularly perturbed boundary value problem for a differential equation with a retarded and a deviating argument. By using the method of boundary functions and the sewing method, we find not only a continuous but also a smooth solution of the problem. We prove the existence of a solution with an internal transition layer. A graphical numerical example is presented.  相似文献   

20.
In this work, we investigate a boundary problem with non‐local conditions for mixed parabolic–hyperbolic‐type equation with three lines of type changing with Caputo fractional derivative in the parabolic part. We equivalently reduce considered problem to the system of second kind Volterra integral equations. In the parabolic part, we use solution of the first boundary problem with appropriate Green's function, and in hyperbolic parts, we use corresponding solutions of the Cauchy problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号