首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A series of sulfopropylated and sulfobutylated polyimide copolymers containing fluorenyl groups, SPI‐4, were synthesized to investigate the effect of alkyl side chains on the properties (stability, mechanical strength, water uptake, and proton conductivity) of the polymimide electrolyte membranes. SPI‐4 showed much better hydrolytic stability (in 10% MeOH aq at 100 °C) than the main chain sulfonated polyimide, SPI‐1. Tough, flexible, and ductile membranes were obtained from these copolymers. At high relative humidity all the SPI‐4 membranes showed high mechanical properties (>34 MPa of the maximum stress) and proton conductivity (>0.1 Scm?1). These properties are comparable to or even better than those of the perfluorosulfonic acid ionomer (Nafion 112). The new polyimide ionomers have proved to be a possible candidate as polymer electrolyte membrane for PEFCs and DMFCs. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4439–4445, 2005  相似文献   

2.
Novel epoxy‐based semi‐interpenetrating polymer networks (semi‐IPNs) of aromatic polyimide, derived from 2,2‐benzidinedisulfonic acid (BDSA), were prepared through a thermal imidization reaction. Dynamic scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were utilized to verify the synchronization of the imidization of sulfonated poly(amic acid) (SPAA) and the crosslinking reactions of epoxy. The semi‐IPNs of epoxy/sulfonated polyimides (SPI‐EPX) exhibit excellent film‐forming characteristics and mechanical integrity at room temperature. Conductivities at 100 °C of 0.0243 S cm?1 (SPI‐EP30) and 0.0141 S cm?1 (SPI‐EP50) were obtained, which are similar to that of the Nafion 117 (0.0287 S cm?1). The increase in the conductivity of SPI‐EP(30,40) with temperature is more rapid than that of Nafion 117. The SPI‐EPX exhibited lower methanol permeability than did Nafion117. The hydrolytic stability of the SPI‐EPX was followed by FTIR spectroscopy at regular intervals. SPI‐EPX prepared using epoxy‐based semi‐IPNs of sulfonated polyimide, SPI‐EP(40,50), exhibited higher hydrolytic stability than the phthalic polyimides (five‐membered ring polyimides).The microstructure was analyzed using atomic force microscopy (AFM) in the tapping mode, which demonstrated that SPI‐EP50 exhibited a nanophase that was separated into an essentially reticulated and venous hydrophobic and hydrophilic domains. Transmission electron microscopy (TEM) confirmed widespread and well‐connected hydrophilic domains, proving the higher hydrolytic stability and strong proton‐transporting properties of the SPI‐EPX membrane. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2262–2276, 2008  相似文献   

3.
Novel sulfonated diamines bearing aromatic pendant groups, namely, 3,5‐diamino‐3′‐sulfo‐4′‐(4‐sulfophenoxy) benzophenone (DASSPB) and 3,5‐diamino‐3′‐sulfo‐4′‐(2,4‐disulfophenoxy) benzophenone (DASDSPB), were successfully synthesized. Novel side‐chain‐type sulfonated (co)polyimides (SPIs) were synthesized from these two diamines, 1,4,5,8‐naphthalene tetracarboxylic dianhydride (NTDA) and nonsulfonated diamines such as 4,4′‐bis(3‐aminophenoxy) phenyl sulfone (BAPPS). Tough and transparent membranes of SPIs with ion exchange capacity of 1.5–2.9 meq g?1 were prepared. They showed good solubility and high thermal stability up to 300 °C. They showed isotropic membrane swelling in water, which was different from the main‐chain‐type and sulfoalkoxy‐based side‐chain‐type SPIs. The relative humidity (RH) and temperature dependence of proton conductivity were examined. At low RH, the novel SPI membranes showed much higher conductivity than the sulfoalkoxy‐based SPIs. They showed comparable or even higher proton conductivity than Nafion 112 in water at 60 °C (>0.10 S cm?1). The membrane of NTDA‐DASDSPB/BAPPS (1/1)‐s displayed reasonably high proton conductivities of 0.05 and 0.30 S cm?1 at 50 and 100% RH, respectively, at 120 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2862–2872, 2006  相似文献   

4.
A novel sulfonated diamine monomer, 2,2′‐bis(p‐aminophenoxy)‐1,1′‐binaphthyl‐6,6′‐disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30–80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film‐forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945–0.161 S/cm) at 20–80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10?8 to 5 × 10?7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10?6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30–60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222–231, 2007  相似文献   

5.
Summary: Branched/crosslinked sulfonated polyimide membranes incorporating superior mechanical properties, high proton conductivity, and excellent fuel cell performance were successfully developed. The resulting polymer electrolytes displayed conductivity values of about 0.2 S · cm−1 at 120 °C and 100% relative humidity. In a single H2/O2 fuel cell system at 90 °C, they exhibited reasonably high fuel cell performances comparable to that of Nafion 112.

The structure of the branched/crosslinked sulfonated polyimide membranes studied here.  相似文献   


6.
New sulfonated poly(imidoaryl ether sulfone) copolymers derived from sulfonated 4,4′‐dichlorodiphenyl sulfone, 4,4′‐dichlorodiphenyl sulfone, and imidoaryl biphenol were evaluated as polymer electrolyte membranes for direct methanol fuel cells. The sulfonated membranes were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, and proton nuclear magnetic resonance spectra. The state of water in the membranes was measured with differential scanning calorimetry, and the existence of free water and bound water was discussed in terms of the sulfonation level. The 10 wt % weight loss temperatures of these copolymers were above 470 °C, indicating excellent thermooxidative stability to meet the severe criteria of harsh fuel‐cell conditions. The proton conductivities of the membranes ranged from 3.8 × 10?2 to 5 × 10?2 S/cm at 90 °C, depending on the degree of sulfonation. The sulfonated membranes maintained the original proton conductivity even after a boiling water test, and this indicated the excellent hydrolytic stability of the membranes. The methanol permeabilities ranged from 1.65 × 10?8 to 5.14 × 10?8 cm2/s and were lower than those of other conventional sulfonated ionomer membranes, particularly commercial perfluorinated sulfonated ionomer (Nafion). The properties of proton and methanol transport were discussed with respect to the state of water in the membranes. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5620–5631, 2005  相似文献   

7.
Segmented disulfonated poly(arylene ether sulfone)‐b‐polyimide copolymers based on hydrophilic and hydrophobic oligomers were synthesized and evaluated for use as proton exchange membranes (PEMs). Amine terminated sulfonated poly (arylene ether sulfone) hydrophilic oligomers and anhydride terminated naphthalene based polyimide hydrophobic oligomers were synthesized via step growth polymerization including high temperature one‐pot imidization. Synthesis of the multiblock copolymers was achieved by an imidization coupling reaction of hydrophilic and hydrophobic oligomers oligomers in a m‐cresol/NMP mixed solvent system, producing high molecular weight tough and ductile membranes. Proton conductivities and water uptake increased with increasing ion exchange capacities (IECs) of the copolymers as expected. The morphologies of the multiblock copolymers were investigated by tapping mode atomic force microscopy (TM‐AFM) and their measurements revealed that the multiblock copolymers had well‐defined nano‐phase separated morphologies which were clearly a function of block lengths. Hydrolytic stability test at 80 °C water for 1000 h showed that multiblock copolymer membranes retained intrinsic viscosities of about 80% of the original values and maintained flexibility which was much improved over polyimide random copolymers. The synthesis and fundamental properties of the multiblock copolymers are reported here and the systematic fuel cell properties will be provided in a separate article. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4879–4890, 2007  相似文献   

8.
A sulfonated dianhydride monomer, 6,6′‐disulfonic‐4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (SBTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (BTDA), using fuming sulfuric acid as the sulfonating reagent. A series of sulfonated homopolyimides were prepared from SBTDA and various common nonsulfonated diamines. The resulting polymer electrolytes, which contain ion conductivity sites on the deactivated positions of the aryl backbone rings, displayed high proton conductivities of 0.25–0.31 S cm?1 at 80 °C. The oxidative stability test indicated that the attachment of the ? SO3H groups onto the dianhydride units did not deteriorate the oxidative stability of the SPI membranes. The better membranes were achieved by the copolymerization of nonsulfonated diamine, SBTDA, and BTDA. Copolymer membrane synthesized from hexane‐1,6‐diamine, SBTDA, and BTDA displayed excellent water stability of more than 1000 h at 90 °C, while its proton conductivity was still at a high level (comparable to that of Nafion 117). Furthermore, the novel block copolymer ( II‐b ) displayed higher proton conductivity compared with the random one ( II‐r ) obviously, probably due to the slightly higher water uptake and better microphase separated morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2820–2832, 2008  相似文献   

9.
New functionalized particles were prepared by attaching sulfonated aromatic bishydroxy compounds onto fumed silica surface. First, a bromophenyl group was introduced onto the silica surface by reaction of bromophenyltrimethoxysilane with fumed silica. Then, sulfonated bishydroxy aromatic compounds were chemically attached to the silica surface by nucleophilic substitution reactions. The structure of the modified silica was characterized by elemental analysis: 13C‐NMR, 29Si‐NMR, and FTIR. Afterward, novel inorganic–organic electrolyte composite membranes based on sulfonated poly(ether ether ketone) have been developed using the sulfonated aromatic bishydroxy compounds chemically attached onto the fumed silica surface. The composite membrane prepared using silica with sulfonated hydroxytelechelic, containing 1,3,4‐oxadiazole units, has higher proton conductivity values in all range of temperatures (40–140 °C) than the membrane containing only the plain electrolyte polymer, while the methanol permeability determined by pervaporation experiment was unchanged. A proton conductivity up to 59 mS cm?1 at 140 °C was obtained. The combination of these effects may lead to significant improvement in fuel cells (fed with hydrogen or methanol) at temperatures above 100 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2278–2298, 2006  相似文献   

10.
We prepared novel proton‐conductivity membranes based on blends of sulfonated polyimides. The blend membranes were prepared from a sulfonated homopolyimide and a sulfonated copolyimide with a solvent‐casting method. The proton conductivities of the blend membranes were measured as functions of the temperature with four‐point‐probe electrochemical impedance spectroscopy. The conductivity of the membranes strongly depended on the sulfonated homopolyimide content and increased with an increase in the content. The proton conductivity of all the blended membranes indicated a higher value than that determined in Nafion at 80 °C, and this may mean that the proton transfer in the blend membranes is responsible for the ionic channels induced by the hydrophobic and hydrophilic domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1325–1332, 2007  相似文献   

11.
A new monomer 1,5‐bis(4‐fluorobenzoyl)‐2,6‐dimethoxynaphthalene (DMNF) was prepared and further polymerized to form naphthalene‐based poly(arylene ether ketone) copolymers containing methoxy groups (MNPAEKs). The side‐chain‐type sulfonated naphthalene‐based poly(arylene ether ketone) copolymers (SNPAEKs) were obtained by demethylation and sulfobutylation. Flexible and tough membranes with reasonably high mechanical strength were prepared. The SNPAEKs membrane showed anisotropic membrane swelling with larger swelling in thickness than in plane. Transmission electron microscopy (TEM) analysis revealed clear nanophase separated structure of SNPAEKs membranes, which composed of hydrophilic side chain and hydrophobic main‐chain domains. Proton conductivities of copolymers increased gradually with increase in temperature. The highest conductivity of 0.179 S/cm was obtained for SNPAEK‐80 (IEC = 1.82 mequiv/g) at 80 °C, which is higher than that of Nafion117 (0.146 S/cm). The SNPAEKs membranes exhibit the methanol permeability in the range of 3.42 × 10?8?4.49 × 10?7 cm2/s, which are much lower than that of Nafion117. They could be the promising materials as alternative to Nafion membrane for direct methanol fuel cells applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47:5772–5783, 2009  相似文献   

12.
A series of novel phenolphthalein‐containing sulfonated poly(arylene ether phosphine oxide)s (sPAEPP) with various sulfonation degrees were synthesized by direct polycondensation. The structure of sPAEPP was confirmed by 1H‐NMR, 13C‐NMR, and IR spectroscopy. The high‐molecular weight of these polymers was determined by gel permeation chromatography (GPC). The transparent, tough, and flexible membranes could be achieved by solution casting. The macroscopic properties and microstructure of the obtained membranes were investigated in detail. The results showed that these sPAEPP membranes displayed excellent properties in terms of swelling, proton conductivity, and methanol permeability. For example, sPAEPP‐100 membrane exhibited an appropriate water uptake of 33.1%, a swelling ratio of only 11.7% (lower than 20.1% of Nafion 117), a proton conductivity of 0.11 S cm?1 (similar to that of Nafion 117) at 80 °C, and a methanol permeability of 4.82 × 10?7 cm2 s?1. Meanwhile, it also presented outstanding oxidative stability. Atomic force microscope (AFM) micrographs showed that the hydrophilic domains of the sPAEPP‐100 membrane formed connected and narrow ionic channels, which contributed to its high proton conductivity and good dimensional stability. As a result, sPAEPP‐100 membrane displays excellent application prospect for fuel cells. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1097–1104  相似文献   

13.
Highly sulfonated multiblock copoly(ether sulfone)s applicable to proton electrolyte fuel cells (PEFCs) were synthesized by the coupling reaction of corresponding hydroxyl‐ terminated oligomers in the presence of highly reactive decafluorobiphenyl (DFB) as a chain extender, followed by postsulfonation with concentrated sulfuric acid. Their molecular weights were reasonably high as determined by viscosity measurement (ηinh = 0.72–1.58 dL/g). It was also confirmed that postsulfonation selectively took place in hydrophilic segments to yield highly sulfonated multiblock copolymers (IEC = 1.90–2.75 mequiv/g). The resulting polymers gave transparent, flexible, and tough membranes by solution casting. The 4b membrane, as a representative sample, demonstrated good mechanical strength in the dry state regardless of high IEC value (2.75 mequiv/g). The 4a–c membranes with higher IEC values (IEC = 2.75–2.79 mequiv/g) maintained high water uptake (13.7–17.7 wt %) at 50% RH and it was still high (7.4–8.5 wt %) at 30% RH. Proton conductivity of all membranes at 80 °C and 95% RH was higher than that of Nafion 117. Furthermore, the 4a membrane showed high proton conductivity, comparable with Nafion 117 in the range of 50–95% RH, and maintained high proton conductivity (2.3 × 10?3 S/cm) even at 30% RH. Finally, the surface morphology of the membrane was investigated by tapping mode atomic force microscopy, which showed well‐connected hydrophilic domains that could work as proton transportation channel. This phase separation and the high water uptake behavior probably contributed to high and effective proton conduction in a wide range of relative humidity. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2757–2764, 2010  相似文献   

14.
Sulfonated multiblock copoly(ether sulfone)s applicable to proton exchange membrane fuel cells (PEMFCs) were synthesized by the coupling reaction of the hydroxyl‐terminated hydrophilic and hydrophobic oligomers with different lengths in the presence of highly reactive decafluorobiphenyl (DFB) as a chain extender to investigate the influence of each length on the membranes' properties, such as water uptake, proton conductivity, and morphology. Multiblock copolymers with high molecular weights (Mn > 50,000, Mw > 150,000) were obtained under mild reaction conditions. The resulting membranes demonstrated good oxidative stability for hot Fenton's reagent and maintained high water uptake (7.3–18.7 wt %) under a low relative humidity (50% RH). Proton conductivity of all membranes at 80 °C and 95% RH was higher than that of Nafion 117 membrane, and good proton conductivity of 7.0 × 10?3 S/cm was obtained at 80 °C and 50% RH by optimizing the oligomer lengths. The surface morphology of the membranes was investigated by tapping mode atomic force microscopy (AFM), which showed that the multiblock copolymer membranes had a clearer surface hydrophilic/hydrophobic‐separated structure than that of the random copolymer, and contributed to good and effective proton conduction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7332–7341, 2008  相似文献   

15.
《先进技术聚合物》2018,29(1):130-142
The possibility of developing low‐cost commercial grafted and sulfonated Poly(vinylidene fluoride) (PVDF‐g‐PSSA) membranes as proton exchange membranes for fuel cell applications have been investigated. PVDF‐g‐PSSA membranes were systematically prepared and examined with the focus of understanding how the polymer microstructure (degree of grafting and sulfonation, ion‐exchange capacity, etc) affects their methanol permeability, water uptake, and proton conductivity. Fourier transform infrared spectroscopy was used to characterize the changes of the membrane's microstructure after grafting and sulfonation. The results showed that the PVDF‐g‐PSSA membranes exhibited good thermal stability and lower methanol permeability. The proton conductivity of PVDF‐g‐PSSA membranes was also measured by the electrochemical impedance spectroscopy method. It was found that the proton conductivity of PVDF‐g‐PSSA membranes depends on the degree of sulfonation. All the sulfonated membranes show high proton conductivity at 92°C, in the range of 27 to 235 mScm−1, which is much higher than that of Nafion212 (102 mScm−1 at 80°C). The results indicated that the PVDF‐g‐PSSA membranes are particularly promising membranes to be used as polymer electrolyte membranes due to their excellent stability, low methanol permeability, and high proton conductivity.  相似文献   

16.
Polysulfones carrying benzoyl(difluoromethylenephosphonic acid) side chains were prepared and investigated for use as proton‐conducting fuel‐cell membranes. In the first step, polysulfones were lithiated and reacted with methyl iodobenzoates to prepare p‐ and o‐iodobenzoyl polysulfones. Next, the phosphonated polysulfones were prepared via CuBr‐mediated cross‐coupling reactions between the iodinated polymer and [(diethoxyphosphinyl)difluoromethyl]zinc bromide. Finally, dealkylation with bromotrimethylsilane afforded highly acidic ? CF2? PO3H2 derivatives. The replacement of the iodine atoms by ? CF2? PO3Et2 units was almost quantitative in the case of o‐iodobenzoyl polysulfone. Membranes based on ionomers having 0.90 mmol of phosphonic acid units/g of dry polymer took up 6 wt % water when immersed at room temperature, and conductivities up to 5 mS cm?1 at 100 °C were recorded. This level of conductivity was comparable to that reached by a membrane based on a sulfonated polysulfone having 0.86 mmol of sulfonic acid/g of dry polymer. Thermogravimetry revealed that the aryl? CF2? PO3H2 arrangement decomposed at approximately 230 °C via cleavage of the C? P bond. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 269–283, 2007.  相似文献   

17.
Phosphoric acid‐doped crosslinked proton‐conducting membranes with high anhydrous proton conductivity, and good chemical stability in phosphoric acid were synthesized and characterized. The synthetic procedure of the acid‐doped composite membranes mainly involves the in situ crosslinking of polymerizable monomer oils (styrene and acrylonitrile) and vinylimidazole, and followed by the sulfonation of pendant imidazole groups with butanesultone, and further doped with phosphoric acid. The resultant phosphoric acid‐doped composite electrolyte membranes are flexible and show high thermal stability and high‐proton conductivity up to the order of 10?2 S cm?1 at 160 °C under anhydrous conditions. The phosphoric acid uptake, swelling degree, and proton conductivity of the composite membranes increase with the vinylimidazole content. The resultant composite membranes also show good oxidative stability in Fenton's reagent (at 70 °C), and quite good chemical stability in phosphoric acid (at 160 °C). The properties of the prepared electrolyte membranes indicate their promising prospects in anhydrous proton‐exchange membrane applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 1311–1317  相似文献   

18.
Novel sulfonated polyimides (SPIs) were prepared from 1,4,5,8‐naphthalenetetracarboxylic dianhydride (NTDA), 2,2′‐bis(4‐aminophenoxy)biphenyl‐5,5′‐disulfonic acid (oBAPBDS) with nonlinear configuration, and common nonsulfonated diamines. Water uptake (WU) in liquid and vapor, water stability, and proton conductivity σ of the resulting SPI membranes were investigated. They were soluble in m‐cresol and dimethylsulfoxide, and their WUs in liquid were much larger than those of the SPIs from other sulfonated diamines with linear configuration such as 4,4′‐bis(4‐aminophenoxy)biphenyl‐3,3′‐disulfonic acid (BAPBDS). NTDA‐oBAPBDS membrane was soluble in water at room temperature, whereas all the oBAPBDS‐based copolyimide membranes were insoluble in water and maintained mechanical strength after being soaked in distilled water at 80 °C for 40–1000 h. This much improved water stability was due to the enhanced solubility stability of membrane toward water. The water vapor sorption isotherms were rather similar between the SPIs with the nonlinear and linear configurations of sulfonated diamine moieties. The present SPIs with IECs of 1.8–2.6 meq/g, including NTDA‐BAPBDS, showed reasonably high proton conductivities under the highly humid conditions and roughly fell on the same σ–WU relation line. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1432–1440, 2004  相似文献   

19.
Partially sulfonated poly(aryl ether sulfone) (PESS) was synthesized and methacrylated via reaction with glycidyl methacrylate (PESSGMA) and cross‐linked via radical polymerization with styrene and vinyl‐phosphonic acid (VPA). The chemical structures of the synthesized pre‐polymers were characterized via FTIR and 1H NMR spectroscopic methods and molecular weight was determined via GPC. Membranes of these polymers were prepared via solution casting method. The crosslinking of the PESS polymer reduced IEC, proton conductivity, swelling in water, and methanol permeability of the membranes while increasing the modulus and the glass transition temperature. However, the introduction of the VPA comonomer increased the proton conductivity while maintaining excellent resistance to methanol cross‐over, which was significantly higher as compared with both PESS and the commercial Nafion membranes. Membranes of PESSGMA copolymers incorporating VPA, exhibited proton conductivity values at 60 °C in the range of 16–32 mS cm−1 and methanol permeability values in the range of 6.52 × 10−9 – 1.92 × 10−8 cm2 s−1. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 558–575  相似文献   

20.
A bisphenol monomer (2,5‐dimethoxy)phenylhydroquinone was prepared and further polymerized to obtain poly(arylene ether ketone) copolymers containing methoxy groups. After demethylation and sulfobutylation, a series of novel poly(arylene ether ketone)s bearing pendant sulfonic acid group (SPAEKs) with different sulfonation content were obtained. The chemical structures of all the copolymers were analyzed by 1H NMR and 13C NMR spectra. Flexible and tough membranes with reasonably good mechanical properties were prepared. The resulting side‐chain‐type SPAEK membranes showed good dimensional stability, and their water uptake and swelling ratio were lower than those of conventional main‐chain‐type SPAEK membranes with similar ion exchange capacity. Proton conductivities of these side‐chain‐type sulfonated copolymers were higher than 0.01 S/cm and increased gradually with increasing temperature. Their methanol permeability values were in the range of 1.97 × 10?7–5.81 × 10?7 cm2/s, which were much lower than that of Nafion 117. A combination of suitable proton conductivities, low water uptake, low swelling ratio, and high methanol resistance for these side‐chain‐type SPAEK films indicated that they may be good candidate material for proton exchange membrane in fuel cell applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号