首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An intermediate‐template‐directed method has been developed for the synthesis of quasi‐one‐dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core–shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction intermediates played an important role in the preparation, which fabricated the framework and provided a localized reducing agent for the reduction of the Au and Pt precursors. The Pt7Au PABNTs showed higher electrocatalytic activity and durability in the oxygen‐reduction reaction (ORR) in 0.1 M HClO4 than porous Pt nanotubes (PtNTs) and commercially available Pt/C. The mass activity of PABNTs was 218 % that of commercial Pt/C after an accelerated durability test. This study demonstrates the potential of PABNTs as highly efficient electrocatalysts. In addition, this method provides a facile strategy for the synthesis of desirable hetero‐nanostructures with controlled size and shape by utilizing an intermediate template.  相似文献   

2.
The synthesis of ultrathin face‐centered‐cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal‐close‐packed (hcp) Au square sheets (AuSSs). The Pt‐layer growth results in a hcp‐to‐fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f‐oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures.  相似文献   

3.
Poly(N‐vinyl‐2‐pyrolidone) protected Pt‐core bimetallic Pt/Au‐shell (Pt@Pt/Au) nanoparticles were prepared by multi‐step reduction of HAuCl4 and H2PtCl6 alternately by hydrogen adsorbed on platinum atom. Transmission electronic microscopy (TEM) and x‐ray diffraction (XRD) were used to characterize Pt@Pt/Au nanoparticles. The structure of the shell of the nanoparticles seems to be the Au‐Pt solid solution.  相似文献   

4.
In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au? M (M=Au, Pd, and Pt) core–shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au? Au, Au? Pd, and Au? Pt core–shell nanostructures with typical porous shells. Moreover, the Au? Au isomeric core–shell nanostructure is reported for the first time. The lower oxidation states of AuI, PdII, and PtII are supposed to contribute to the formation of porous core–shell nanostructures instead of yolk‐shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au? Pd core–shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core–shell nanostructures. As expected, the Au? Pd core–shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (If/Ib is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au? M (M=Au, Pd, and Pt) core–shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface‐enhanced Raman scattering, and so forth.  相似文献   

5.
Au/Pt core shell nanoparticles (NPs) have been prepared via a layer‐by‐layer growth of Pt layers on Au NPs using underpotential deposition (UPD) redox replacement technique. A single UPD Cu monolayer replacement with Pt(II) yielded a uniform Pt film on Au NPs, and the shell thickness can be tuned by controlling the number of UPD redox replacement cycles. Oxygen reduction reaction (ORR) in air‐saturated 0.1 M H2SO4 was used to investigate the electrocatalytic behavior of the as‐prepared core shell NPs. Cyclic voltammograms of ORR show that the peak potentials shift positively from 0.32 V to 0.48 V with the number of Pt layers increasing from one to five, suggesting the electrocatalytic activity increases with increasing the thickness of Pt shell. The increase in electrocatalytic activity may originate mostly from the large decrease of electronic influence of Au cores on surface Pt atoms. Rotating ring‐disk electrode voltammetry and rotating disk electrode voltammetry demonstrate that ORR is mainly a four‐electron reduction on the as‐prepared modified electrode with 5 Pt layers and first charge transfer is the rate‐determining step.  相似文献   

6.
Poly(styrene‐bN‐isopropylacrylamide) (PSt‐b‐PNIPAM) with dithiobenzoate terminal group was synthesized by reversible addition‐fragmentation‐transfer polymerization. The dithiobenzoate terminal group was converted into thiol terminal group with NaBH4, resulting thiol‐terminated PSt‐b‐PNIPAM‐SH. After PSt‐b‐PNIPAM‐SH assembled into core‐shell micelles in aqueous solution, gold nanoparticles were in situ surface‐linked onto the micelles through the reduction of gold precursor anions with NaBH4. Thus, temperature responsive core/shell micelles of PSt‐b‐PNIPAM surface‐linked with gold nanoparticles (PSt‐b‐PNIPAM‐Au micelles) were obtained. Transmission Electron Microscopy revealed the successful linkage of gold nanoparticles and the dependence of the number of gold nanoparticles per micelle on the molar ratio of HAuCl4 to thiol group of PSt‐b‐PNIPAM. Dynamic Light Scattering analysis demonstrated thermo‐responsive behavior of PSt‐b‐PNIPAM‐Au micelles. Changing the temperature of PSt‐b‐PNIPAM‐Au micelles led to the shrinkage of PNIPAM shell and allowed to tune the distance between gold nanoparticles. Ultraviolet–visible (UV–vis) spectroscopy clearly showed the reversible modulation of UV–vis absorbance of PSt‐b‐PNIPAM‐Au micelles upon heating and cooling. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5156–5163, 2007  相似文献   

7.
A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion‐like morphology comprising Pd core and Pt shell. The slow reduction kinetics associated with the use of ascorbic acid as a weak reductant and suitable Pd/Pt atomic ratio (1:1) play a principal role in the formation mechanism of such branched Pd@Pt core–shell NPs, which differs from the traditional seed‐mediated growth. The catalyst efficiently achieves the reduction of a variety of olefins in good to excellent yields. Importantly, higher catalytic efficiency of dandelion‐like Pd@Pt core–shell NPs was observed for the olefin reduction than commercially available Pt black, Pd NPs, and physically admixed Pt black and Pd NPs. This superior catalytic behavior is not only due to larger surface area and synergistic effects but also to the unique micro–mesoporous structure with significant contribution of mesopores with sizes of several tens of nanometers.  相似文献   

8.
Effective control over the morphology and size of Pd/Pt nanoparticles is currently of immense interest because their electronic, optical, and catalytic properties are superior to pure platinum nanoparticles. However, control over the nanoparticle shape is still challenging. Therefore, a novel design and synthetic route needs to be developed to obtain a high‐performance catalyst. Herein, a hierarchical three‐component nanocomposite structure system (HTNSS) composed of graphene, TiO2, and Pd@Pt core–shell nanoparticles was designed and synthesized by a sequential strategy that focuses on constructing the monolithic structure rather than limited single‐component counterparts. The resulting composites were characterized by various techniques, which showed that the Pd@Pt core–shell nanoparticles were preferentially deposited on the peripheral interface of the graphene and TiO2 nanoparticles. The photoelectrical and catalytic performances were obviously improved relative to the commercially available E‐TEK Pt/C owing to their synergistic effect.  相似文献   

9.
We devise a new and green route for the multi‐gram synthesis of core–shell nanoparticles (NPs) in one step under organic‐free and pH‐neutral conditions. Simply mixing core and shell metal precursors in the presence of solid metal oxides in water allowed for the facile fabrication of small CeO2‐covered Au and Ag nanoparticles dispersed on metal oxides in one step. The CeO2‐covered Au nanoparticles acted as a highly efficient and reusable catalyst for a series of chemoselective hydrogenations, while retaining C=C bonds in diverse substrates. Consequently, higher environmental compatibility and more efficient energy savings were achieved across the entire process, including catalyst preparation, reaction, separation, and reuse.  相似文献   

10.
Controlling exchange coupling between hard magnetic and soft magnetic phases is the key to the fabrication of advanced magnets with tunable magnetism and high energy density. Using FePt as an example, control over the magnetism in exchange‐coupled nanocomposites of hard magnetic face‐centered tetragonal (fct) FePt and soft magnetic Co (or Ni, Fe2C) is shown. The dispersible hard magnetic fct‐FePt nanoparticles are first prepared with their coercivity (Hc) reaching 33 kOe. Then core/shell fct‐FePt/Co (or Ni, Fe2C) nanoparticles are synthesized by reductive thermal decomposition of the proper metal precursors in the presence of fct‐FePt nanoparticles. These core/shell nanoparticles are strongly coupled by exchange interactions and their magnetic properties can be rationally tuned by the shell thickness of the soft phase. This work provides an ideal model system for the study of exchange coupling at the nanoscale, which will be essential for building superstrong magnets for various permanent magnet applications in the future.  相似文献   

11.
We report the controlled synthesis of exchange‐coupled face‐centered tetragonal (fct) FePd/α‐Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high‐temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct‐FePd phase was formed by the interdiffusion between reduced α‐Fe and face‐centered cubic (fcc) Pd, whereas the excessive α‐Fe remained around the fct‐FePd grains, realizing exchange coupling between the soft magnetic α‐Fe and hard magnetic fct‐FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange‐coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g?1. This work provides a bottom‐up approach using exchange‐coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties.  相似文献   

12.
Polystyrene‐core–silica‐shell hybrid particles were synthesized by combining the self‐assembly of nanoparticles and the polymer with a silica coating strategy. The core–shell hybrid particles are composed of gold‐nanoparticle‐decorated polystyrene (PS‐AuNP) colloids as the core and silica particles as the shell. PS‐AuNP colloids were generated by the self‐assembly of the PS‐grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the “free” PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core–shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high‐temperature catalysis and as nanoreactors.  相似文献   

13.
Magnetic composite nanospheres (MCS) were first prepared via mini‐emulsion polymerization. Subsequently, the hybrid core–shell nanospheres were used as carriers to support gold nanoparticles. The as‐prepared gold‐loading magnetic composite nanospheres (Au‐MCS) had a hydrophobic core embed with γ‐Fe3O4 and a hydrophilic shell loaded by gold nanoparticles. Both the content of γ‐Fe3O4 and the size of gold nanoparticles could be controlled in our experiments, which resulted in fabricating various materials. On one hand, the Au‐MCS could be used as a T2 contrast agent with a relaxivity coefficient of 362 mg?1 ml S?1 for magnetic resonance imaging. On the other hand, the Au‐MCS exhibited tunable optical‐absorption property over a wavelength range from 530 nm to 800 nm, which attributed to a secondary growth of gold nanoparticles. In addition, dynamic light scattering results of particle sizing and Zeta potential measurements revealed that Au‐MCS had a good stability in an aqueous solution, which would be helpful for further applications. Finally, it showed that the Au‐MCS were efficient catalysts for reductions of hydrophobic nitrobenzene and hydrophilic 4‐nitrophenol that could be reused by a magnetic separation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Manganese silicate in bubble‐like morphology was used as a versatile platform to prepare a new class of yolk–shell hybrids. The mesoporosity of the shell was generated from the interbubble space and the bubble structure of manganese silica was used to hold and support nanoparticles (e.g., Au, Ag, Pt, Co, Ni, Au–Pd alloy, MoO2, Fe3O4, carbon nanotubes and their combinations). We also used heterogeneous catalysis reactions to demonstrate the workability of these catalysts in both liquid and gas phases.  相似文献   

15.
Due to the unique size effects, nanomaterials in infrared absorption have attracted much attention for their strong absorption in the infrared region. To achieve the infrared multi‐band absorption, we propose to synthesize a core‐shell structure nanomaterial consisting of NaYF4:Yb3+, Er3+ core and a layer of SiO2 as shell. A series of NaYF4:Yb3+, Er3+ nanocrystals were synthesized through hydrothermal method by adjusting the ratio of citric acid(CA)‐to‐NaOH, and the effects of CA concentration, and NaOH concentration were studied in detail. NaYF4:Yb3+, Er3+@SiO2 nanoparticles were synthesized by sol‐gel method using TEOS as silica source. The results show that the core‐shell NaYF4:Yb3+, Er3+@SiO2 nanoparticles were successfully synthesized. Up‐conversion spectra of these nanoparticles were recorded with 980 nm laser excitation under room temperature. There are no changes of the emission centers of nanoparticles before or after silica coating, but the emission intensities of nanoparticles after silica coating are weakened. Furthermore, the property of infrared multi‐band absorption was tested through ultraviolet‐visible‐near infrared spectrophotometer and infrared absorption spectra. The results illustrate that the multi‐band infrared absorption nanomaterial was successfully synthesized.  相似文献   

16.
17.
《Electroanalysis》2018,30(8):1604-1609
A novel approach to high loaded Pt core/carbon shell catalyst synthesis from a Pt‐aniline complex was reported. The Pt‐aniline complex was successfully synthesized by irradiating an ultrasound to the hexachloro platinic acid and aniline monomer mixture. The highly viscous nature of aniline leads to reproducible hexagonal plate like Pt‐aniline complex crystals. The chemical composition of the Pt‐aniline complex was identified as [PtCl2(C6H5NH2)2] with the help of NMR, XPS, HR ESI‐MS, and TGA analyses. Furthermore, the Pt‐aniline hexagonal plates were sintered at various temperatures like 400 °C, 500 °C, and 700 °C for an hour. This formed the highly dispersed carbon covered Pt nano particles with loading of 80.1 wt %, 81.3 wt %, and 83.4 wt % for HP‐4, HP‐5, and HP‐7, respectively. After supporting it on Vulcan XC‐72, Pt core/carbon shell pyrolyzed at a low temperature showed excellent performance in methanol oxidation reaction. In addition, Pt core/carbon shell prepared at a high temperature revealed excellent tolerance to methanol.  相似文献   

18.
Using a successive method, PAMAM dendrimer‐encapsulated bimetallic PdPt nanoparticles have been successfully prepared with core‐shell structures (Pd@Pt DENs). Evidenced by UV‐vis spectra, high resolution transmission electron microscopy, and X‐ray energy dispersive spectroscopy (EDS), the obtained Pd@Pt DENs are monodispersed and located inside the cavity of dendrimers, and they show a different structure from monometallic Pt or Pd and alloy PdPt DENs. The core‐shell structure of Pd@Pt DENs is further confirmed by infrared measurements with carbon monoxide (IR‐CO) probe. In order to prepare Pd@Pt DENs, a required Pd/Pt ratio of 1:2 is determined for the Pt shell to cover the Pd core completely. Finally, a mechanism for the formation of Pd@Pt DENs is proposed.  相似文献   

19.
We synthesized Pt monolayer electrocatalysts for oxygen-reduction using a new method to obtain the supporting core–shell nanoparticles. They consist of a Pt monolayer deposited on carbon-supported Co–Pd core–shell nanoparticles with the diameter of 3–4 nm. The nanoparticles were made using a redox-transmetalation (electroless deposition) method involving the oxidation of Co by Pd cations, yielding a Pd shell around the Co core. The quality of the thus-formed core–shell structure was verified using transmission electron microscopy and X-ray absorption spectroscopy, while cyclic voltammetry was employed to confirm the lack of Co oxidation (dissolution). A Pt monolayer was deposited on the Co–Pd core–shell nanoparticles by the galvanic displacement of a Cu monolayer obtained by underpotential deposition. The total noble metal mass-specific activity of this Pt monolayer electrocatalyst was ca. 3-fold higher than that of commercial Pt/C electrocatalysts.  相似文献   

20.
Poly(3,4‐ethylenedioxypyrrole) (PEDOP)–Ag and PEDOP–Au nanocomposite films have been synthesized for the first time by electropolymerization of the conducting‐polymer precursor in a waterproof ionic liquid, 1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, followed by Ag/Au nanoparticle incorporation. That the Ag/Au nanoparticles are not adventitious entities in the film is confirmed by a) X‐ray photoelectron spectroscopy, which provides evidence of Ag/Au–PEDOP interactions through chemical shifts of the Ag/Au core levels and new signals due to Ag–N(H) and Au–N(H) components, and b) electron microscopy, which reveals Au nanoparticles with a face‐centered‐cubic crystalline structure associated with the amorphous polymer. Spectroelectrochemistry of electrochromic devices based on PEDOP–Au show a large coloring efficiency (ηmax=270 cm2 C?1, λ=458 nm) in the visible region, for an orange/red to blue reversible transition, followed by a second, remarkably high ηmax of 490 cm2 C?1 (λ=1000 nm) in the near‐infrared region as compared to the much lower values achieved for the neat PEDOP analogue. Electrochemical impedance spectroscopy studies reveal that the metal nanoparticles lower charge‐transfer resistance and facilitate ion intercalation–deintercalation, which manifests in enhanced performance characteristics. In addition, significantly faster color–bleach kinetics (five times of that of neat PEDOP!) and a larger electrochemical ion insertion capacity unambiguously demonstrate the potential such conducting‐polymer nanocomposites have for smart window applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号