首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A combined experimental and theoretical study is conducted on a series of model compounds in order to assess the combined role of branching and charge symmetry on absorption, photoluminescence, and two-photon absorption (TPA) properties. The main issue of this study is to examine how branching of quadrupolar chomophores can lead to different consequences as compared to branching of dipolar chromophores. Hence, three structurally related pi-conjugated quadrupolar chromophores symmetrically substituted with donor end groups and one branched structure built from the assembly of three quadrupolar branches via a common donor moiety are used as model compounds. Their photophysical properties are studied using UV-vis spectroscopy, and the TPA spectra are determined through two-photon excited fluorescence experiments using femtosecond pulses in the 500-1000 nm range. Experimental studies are complemented by theoretical calculations. The applied theoretical methodology is based on time-dependent density functional theory, the Frenkel exciton model, and analysis in terms of the natural transition orbitals of relevant electronic states. Theory reveals that a symmetrical intramolecular charge transfer from the terminal donating groups to the middle of the molecule takes place in all quadrupolar chromophores upon photoexcitation. In contrast, branching via a central electron-donating triphenylamine moiety breaks the quadrupolar symmetry of the branches. Consequently, all Frank-Condon excited states have significant asymmetric multidimensional charge-transfer character upon excitation. Subsequent vibrational relaxation of the branched chromophore in the excited state leads to a localization of the excitation and fluorescence stemming from a single branch. As opposed to what was earlier observed when dipolar chromophores are branched via the same common electron-donating moiety, we find only a slight enhancement of the maximum TPA response of the branched compound with respect to an additive contribution of its quadrupolar branches. In contrast, substantial modifications of the spectral shape are observed. This is attributed to the subtle interplay of interbranch electronic coupling and asymmetry caused by branching.  相似文献   

2.
将具有双-2-脲基-4[1H]-嘧啶酮(bisUPy)的β-二羰基氟硼类衍生物(BF2-bisUPy)及卟啉衍生物(Por(Pt)-bisUPy)通过四重氢键作用组装成超分子聚合物,通过微乳液法制备成在水中均匀分散的超分子聚合物纳米颗粒(SPNP)。扫描电子显微镜形貌表征表明获得的纳米颗粒粒径约为60 nm。紫外-可见吸收光谱、荧光发射光谱及寿命衰减实验均证明纳米颗粒内BF2-bisUPy与Por(Pt)-bisUPy可发生高效的能量传递。具有双光子吸收的BF2-bisUPy作为能量供体,可通过荧光共振能量传递(FRET)增强双光子激发下Por(Pt)-bisUPy的发光。双光子激发荧光强度与激光功率测试表明所制备的超分子聚合物纳米颗粒具有强烈的双光子激发下的荧光及磷光双发射,这种纳米材料可进入细胞,具有优秀的生物相容性,并在双光子激发时表现出强烈的荧光和磷光双发射生物成像。  相似文献   

3.
1,3-Alternate calix[4]arene-based fluorescent chemosensors bearing two-photon absorbing chromophores have been synthesized, and their sensing behaviors toward metal ions were investigated via absorption band shifts as well as one- and two-photon fluorescence changes. Free ligands absorb the light at 461 nm and weakly emit their fluorescence at 600 nm when excited by UV-vis radiation at 461 nm, but no two-photon excited fluorescence is emitted by excitation at 780 nm. Addition of an Al(3+) or Pb(2+) ion to a solution of the ligand causes a blue-shifted absorption and enhanced fluorescence due to a declined resonance energy transfer (RET) upon excitation by one- and two-photon processes. Addition of a Pb(2+) ion to a solution of 1.K(+) results in a higher fluorescence intensity than the original 1.Pb(2+) complex regardless of one- or two-photon excitation, due to the allosteric effect induced by the complexation of K(+) with a crown loop.  相似文献   

4.
Electronic spectroscopy of nine benzannelated enediynes and a related fulvene was studied under one-photon and two-photon excitation conditions. We utilize measured absorbance and emission spectra and time-resolved fluorescence decays of these molecules to calculate their radiative lifetimes and fluorescence quantum yields. The fluorescence quantum yields for the other compounds were referenced to the fluorescence quantum yield of compound 3 and used to determine relative two-photon absorption cross-sections. Further insight into experimental studies has been achieved using time-dependent density functional (TD-DFT) computations. The probability of two-photon absorption (TPA) increases noticeably for excitation to the higher excited states. The photophysical properties of benzannelated enediynes are sensitive to substitutions at both the core and the periphery of the enediyne chromophore. Considerably enhanced two-photon absorption is observed in an enediyne with donor substitution in the middle and acceptor substitution at the termini. Excited states with B symmetry are not active in TPA spectra. From a practical point of view, this study extends the range of wavelengths applicable for activation of the enediyne moiety from 350 to 600 nm and provides a rational basis for future studies in this field. Our theoretical computations confirmed that lowest energy TPA in benzannelated enediynes involves different orbitals than lowest energy one-photon absorbance and provided further support to the notion that introduction of donor and acceptor substituents at different ends of a molecule increases TPA.  相似文献   

5.
In order to better understand the nature of intramolecular charge and energy transfer in multibranched molecules, we have synthesized and studied the photophysical properties of a monomer quadrupolar chromophore with donor-acceptor-donor (D-A-D) electronic push-pull structure, together with its V-shaped dimer and star-shaped trimers. The comparison of steady-state absorption spectra and fluorescence excitation anisotropy spectra of these chromophores show evidence of weak interaction (such as charge and energy transfer) among the branches. Moreover, similar fluorescence and solvation behavior of monomer and branched chromophores (dimer and trimer) implies that the interaction among the branches is not strong enough to make a significant distinction between these molecules, due to the weak interaction and intrinsic structural disorder in branched molecules. Furthermore, the interaction between the branches can be enhanced by inserting π bridge spacers (-C═C- or -C≡C-) between the core donor and the acceptor. This improvement leads to a remarkable enhancement of two-photon cross-sections, indicating that the interbranch interaction results in the amplification of transition dipole moments between ground states and excited states. The interpretations of the observed photophysical properties are further supported by theoretical investigation, which reveal that the changes of the transition dipole moments of the branched quadrupolar chromophores play a critical role in observed the two-photon absorption (2PA) cross-section for an intramolecular charge transfer (ICT) state interaction in the multibranched quadrupolar chromophores.  相似文献   

6.
We describe the thermodynamic characterisation of the self‐sorting process experienced by two homodimers assembled by hydrogen‐bonding interactions through their cyclopeptide scaffolds and decorated with Zn–porphyrin and fullerene units into a heterodimeric assembly that contains one electron‐donor (Zn–porphyrin) and one electron‐acceptor group (fullerene). The fluorescence of the Zn–porphyrin unit is strongly quenched upon heterodimer formation. This phenomenon is demonstrated to be the result of an efficient photoinduced electron‐transfer (PET) process occurring between the Zn–porphyrin and the fullerene units of the heterodimeric system. The recombination lifetime of the charge‐separated state of the heterodimer complex is in the order of 180 ns. In solution, both homo‐ and heterodimers are present as a mixture of three regioisomers: two staggered and one eclipsed. At the concentration used for this study, the high stability constant determined for the heterodimer suggests that the eclipsed conformer is the main component in solution. The application of the bound‐state scenario allowed us to calculate that the heterodimer exists mainly as the eclipsed regioisomer (75–90 %). The attractive interaction that exists between the donor and acceptor chromophores in the heterodimeric assembly favours their arrangement in close contact. This is confirmed by the presence of charge‐transfer bands centred at 720 nm in the absorption spectrum of the heterodimer. PET occurs in approximately 75 % of the chromophores after excitation of both Zn–porphyrin and fullerene chromophores. Conversely, analogous systems, reported previously, decorated with extended tetrathiafulvalene and fullerene units showed a PET process in a significantly reduced extent (33 %). We conclude that the strength (stability constant (K)×effective molarity (EM)) of the intramolecular interaction established between the two chromophores in the Zn–porphyrin/fullerene cyclopeptide‐based heterodimers controls the regioisomeric distribution and regulates the high extent to which the PET process takes place in this system.  相似文献   

7.
本文以二苯乙烯和香豆素为共轭桥,二乙氨基为电子给体,羰基为电子受体,合成了一个具有D-π1-A-π2-D结构的香豆素酮类双光子染料C3.用紫外-可见光谱、荧光光谱研究了该化合物的光物理性质.发现在光作用下C3很容易发生分子内电荷转移,进而转变为扭曲的分子内电荷转移,产生很大的偶极矩变化.以飞秒脉冲激光为激发光源,用上转换荧光法测定了其双光子吸收截面.在激发波长为850 nm时,新化合物的双光子吸收截面值达1292 GM,比同系列香豆素酮衍生物C1、C2的双光子吸收截面值高一到两个数量级.  相似文献   

8.
[reaction: see text] A divergent synthesis of internally functionalized dendrimers based on a modular functional monomer has been developed. This strategy was applied to the construction of a light-harvesting dendrimer containing one set of naphthopyranone dyes located at the interior and another set of coumarin chromophores located in the adjacent outer layer surrounding a porphyrin acceptor. Quantitative energy transfer from both donor pigments is observed, giving rise to exclusive emission from the porphyrin core over all excitation wavelengths.  相似文献   

9.
Resonance energy transfer from two-photon absorbing fluorene derivatives to the photochromic compound 3,4-bis-(2,4,5-trimethyl-thiophen-3-yl)furan-2,5-dione (PC 1) is investigated in hexane under one- and two-photon excitation. The quenching of the steady-state fluorescence of donor molecules in the presence of the diarylethene acceptor is used to study the nature of resonance energy transfer. The F?rster distances and critical acceptor concentrations are determined for nonbound donor-acceptor pairs in homogeneous molecular ensembles. Quite significantly, up to a two-fold enhancement in the velocity of the photochromic transformation of 1, in the presence of two-photon absorbing fluorene derivatives, is demonstrated.  相似文献   

10.
Two dyads of eosin and porphyrin linked with a semi-rigid (-CH2phCH2-) or flexible (-(CH2)4-) bridge and their reference model compounds were synthesized and characterized The intermoleccular interaction and intramolecular photoinduced singlet energy transfer and electron transfer were studied by their absorp tion spectra,fluorescence emission,excitation spectra and fluorescence lifetime The model compounds,ethyl ester of eosm (EoEt) and porphyrin (PorEt),could form complexes in the ground state.When the eosin moieties in dyads were excited,they could transfer some singlet energy to the porphyrins; in the meantime,they could also ndsce electron transfer between two chromophores.Exciting the porphyrin moieties in dyads could induce electron transfer from eosin moieties to porphyrin moieties.The efficiencies (EnT,ET) and rate constants (kEnT,kET) were related to the polarity of solvents and mutual orientation of the two chromophores in dyads.  相似文献   

11.
Femtosecond fluorescence anisotropy measurements for a variety of cyclic porphyrin arrays such as Zn(II)porphyrin m-trimer and hexamer are reported along with o-dimer and monomer as reference molecules. In the porphyrin arrays, a pair of porphyrin moieties are joined together via triphenyl linkage to ensure cyclic and rigid structures. Anisotropy decay times of the porphyrin arrays can be well described by the F?rster incoherent excitation hopping process between the porphyrin units. Exciton coupling strengths of 74 and 264 cm(-1) for the m-trimer and hexamer estimated from the observed excitation energy hopping rates are close to those of B800 and B850, respectively, in the LH2 bacterial light-harvesting antenna. Thus, these cyclic porphyrin array systems have proven to be useful in understanding energy migration processes in a relatively weak interaction regime in light of the similarity in overall structures and constituent chromophores to natural light-harvesting arrays.  相似文献   

12.
A novel fluorescence resonance energy transfer (FRET) system containing a two-photon absorbing dye and a nile red chromophore has been synthesized. Upon two-photon excitation by laser at 815 nm this molecule displays efficient energy transfer from the two-photon absorbing dye to the nile red moiety, with an 8-fold increase in emission compared to the model compound. Similarly, single-photon excitation of the two-photon absorbing moiety at 405 nm results in >99% energy-transfer efficiency, along with a 3.4-fold increase in nile red emission compared to direct excitation of the nile red chromophore at 540 nm. This system provides an effective way to use IR radiation to excite molecules that, by themselves, have little or no two-photon absorption.  相似文献   

13.
3-Bromo boron dipyrromethene (3-bromo BODIPY) has been used as key synthon to prepare one ethynyl bridged and six ethynylphenyl bridged BODIPY-chromophore conjugates using mild Pd(0) coupling conditions. The chromophores possessing very distinct features, such as anthracene, BODIPY, terpyridine, porphyrin, Zn(II)porphyrin, 21,23-dithiaporphyrin and thiasapphyrin were connected at 3-position of boronboron-dipyrromethene dye by coupling of 3-bromo BODIPY with ethynyl or ethynylphenyl chromophore in toluene/triethylamine in the presence of catalytic amount of AsPh3/Pd2(dba)3 at 40 °C followed by column chromatographic purification. The spectral studies indicated that the interaction is stronger in ethynyl bridged BODIPY-chromophore conjugate compared to ethynylphenyl bridged BODIPY-chromophore conjugates. The steady-state fluorescence indicated that in ethynyl bridged BODIPY-anthracene conjugate, the BODIPY unit act as energy acceptor and showed a possibility of energy transfer from donor anthracene unit to acceptor BODIPY unit on selective excitation of anthracene unit. However, in ethynylphenyl bridged BODIPY-porphyrin conjugates, the BODIPY unit act as energy donor and exhibited a possibility of singlet-singlet energy transfer from BODIPY unit to porphyrin unit.  相似文献   

14.
We report a newly synthesized polymer of a star-shaped porphyrin compound(TPA-FxP) with four oligofluorene arms at its meso positions with the pronounced enhancement of the two-photon properties and the generation of singlet oxygen by utilizing the two-photon excited fluorescence resonance energy transfer.The steady-state spectra and transient triplet-triplet absorption spectra give evidence that the enhanced two-photon absorption cross section results from not only the through-space energy transfer(Frster...  相似文献   

15.
We have fabricated a set of self-assembled monolayers consisting of naphthalene and dansyl derivatives in a range of surface loading ratios for the purpose of examining excitation transport in mixed self-assembled monolayer systems. Both tethered chromophores were immobilized on an epoxide-terminated adlayer on silica via an identical spacer, where the linking chemistry produced an amide linkage. X-ray photoelectron spectroscopy (XPS), ellipsometry, and contact angle measurements were used to characterize these chromophore-containing layers. The excitation transfer behavior of these monolayers has been examined using steady-state and time-resolved fluorescence spectroscopy. Steady-state fluorescence measurements show that excitation transfer from the naphthalene to dansyl chromophores occurs, with the efficiency of excitation transport scaling with chromophore surface loading densities, as expected. The donor lifetimes decrease with increasing acceptor loading density, and the functional form of the acceptor decay was independent of the donor/acceptor ratio. Our findings are not consistent with a homogeneous adlayer, but do provide information on the structural heterogeneity that is characteristic of these interfaces.  相似文献   

16.
We report the first highly efficient artificial light‐harvesting systems based on nanocrystals of difluoroboron chromophores to mimic the chlorosomes, one of the most efficient light‐harvesting systems found in green photosynthetic bacteria. Uniform nanocrystals with controlled donor/acceptor ratios were prepared by simple coassembly of the donors and acceptors in water. The light‐harvesting system funneled the excitation energy collected by a thousand donor chromophores to a single acceptor. The well‐defined spatial organization of individual chromophores in the nanocrystals enabled an energy transfer efficiency of 95 %, even at a donor/acceptor ratio as high as 1000:1, and a significant fluorescence of the acceptor was observed up to donor/acceptor ratios of 200 000:1.  相似文献   

17.
In this report we describe the synthesis of multichromophore arrays consisting of two Bodipy units axially bound to a Sn(IV) porphyrin center either via a phenolate (3) or via a carboxylate (6) functionality. Absorption spectra and electrochemical studies show that the Bodipy and porphyrin chromophores interact weakly in the ground state. However, steady-state emission and excitation spectra at room temperature reveal that fluorescence from both the Bodipy and the porphyrin of 3 are strongly quenched suggesting that, in the excited state, energy and/or electron transfer might occur. Indeed, as transient absorption experiments show, selective excitation of Bodipy in 3 results in a rapid decay (τ ≈ 2 ps) of the Bodipy-based singlet excited state and a concomitant rise of a charge-separated state evolving from the porphyrin-based singlet excited state. In contrast, room-temperature emission studies on 6 show strong quenching of the Bodipy-based fluorescence leading to sensitized emission from the porphyrin moiety due to a transduction of the singlet excited state energy from Bodipy to the porphyrin. Emission experiments at 77 K in frozen toluene reveal that the room-temperature electron transfer pathway observed in 3 is suppressed. Instead, Bodipy excitation in 3 and 6 results in population of the first singlet excited state of the porphyrin chromophore. Subsequently, intersystem crossing leads to the porphyrin-based triplet excited state.  相似文献   

18.
The synthesis, characterization, photochemistry, and two-photon photophysical properties of a new dye-derivatized iron sulfur nitrosyl cluster Fe2(mu-RS)2(NO)4 (AFX-RSE, RS = 2-thioethyl ester of N-phenyl-N-(3-(2-ethoxy)phenyl)-7-(benzothiazol-2-yl)-9,9-diethyl-fluoren-2-yl-amine) were investigated. Under continuous photolysis, AFX-RSE decomposes with modest quantum yields (Phi(diss) = (4.9 +/- 0.9) x 10(-3) at lambda(irr) = 436 nm) as measured from the loss of the nitrosyl bands in the IR absorbance spectrum. Nitric oxide (NO) was qualitatively demonstrated to be photochemically produced via single-photon excitation through the use of an NO-specific electrode. Steady-state luminescence measurements have shown that AFX-RSE fluorescence is about 88% quenched relative to the model compound AF-tosyl. This is attributed to a relatively efficient energy transfer from the excited states of the antenna chromophores to the dinuclear metal center, with the subsequent production of NO. In addition, the two-photon absorption (TPA) cross sections (delta) were measured for the AF-chromophores via the two-photon excitation (TPE) photoluminescence technique using a femtosecond excitation source. The TPA cross section of AFX-RSE was found with this technique to be delta = 246 +/- 8 GM (1 GM = 10(-50) cm4 s photon(-1) molecule(-1)).  相似文献   

19.
Hyper-Rayleigh scattering measurements are performed on nonlinear optical chromophores using an excitation wavelength of 1907 nm. This wavelength is the longest that has yet been reported for the hyper-Rayleigh scattering experiment and allows measurements of the first hyperpolarizability of chromophores that are free of contributions from two-photon absorption induced fluorescence and reduces one and two photon resonance enhancement to a minimum. Using the 1907 nm setup we demonstrate good agreement between our results and those obtained with the electric field induced second harmonic generation (EFISHG) technique previously performed at this wavelength.  相似文献   

20.
Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号