首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The transient absorption spectrum (max = 320, 400 and 550 nm) obtained on reaction of OH radicals with 4-(methylthio)benzoic acid is assigned to a solute radical cation with a positive charge on the benzene ring. The reaction with specific one-electron oxidants also produced similar spectrum and the oxidation potential for the formation of solute radical cation is estimated to be between 1.4 and 1.6 V vs NHE. The reaction of eaq - with the solute showed the formation of a transient absorption band at 320 nm and is assigned to solute radical anion with reduction potential more negative than-1.5 V.  相似文献   

2.
The excited state dynamics in polycrystalline thin films of tetracene are studied using both picosecond fluorescence and femtosecond transient absorption. The solid-state results are compared with those obtained for monomeric tetracene in dilute solution. The room temperature solid-state fluorescence decays are consistent with earlier models that take into account exciton-exciton annihilation and exciton fission but with a reduced delayed fluorescence lifetime, ranging from 20-100 ns as opposed to 2?μs or longer in single crystals. Femtosecond transient absorption measurements on the monomer in solution reveal several excited state absorption features that overlap the ground state bleach and stimulated emission signals. On longer timescales, the initially excited singlet state completely decays due to intersystem crossing, and the triplet state absorption superimposed on the bleach is observed, consistent with earlier flash photolysis experiments. In the solid-state, the transient absorption dynamics are dominated by a negative stimulated emission signal, decaying with a 9.2 ps time constant. The enhanced bleach and stimulated emission signals in the solid are attributed to a superradiant, delocalized S(1) state that rapidly fissions into triplets and can also generate a second superradiant state, most likely a crystal defect, that dominates the picosecond luminescence signal. The enhanced absorption strength of the S(0)→S(1) transition, along with the partially oriented nature of our polycrystalline films, obscures the weaker T(1)→T(N) absorption features. To confirm that triplets are the major species produced by relaxation of the initially excited state, the delayed fluorescence and ground state bleach recovery are compared. Their identical decays are consistent with triplet diffusion and recombination at trapping or defect sites. The results show that complications like exciton delocalization, the presence of luminescent defect sites, and crystallite orientation must be taken into account to fully describe the photophysical behavior of tetracene thin films. The experimental results are consistent with the traditional picture that tetracene's photodynamics are dominated by exciton fission and triplet recombination, but suggest that fission occurs within 10 ps, much more rapidly than previously believed.  相似文献   

3.
The vibrational relaxation of the bending mode of HDO in liquid D2O has been studied using time-resolved mid-infrared pump-probe spectroscopy. At short delays, the transient spectrum clearly shows the v = 1 --> 2 induced absorption and v = 1 --> 0 bleaching and stimulated emission, whereas at long delays, the transient spectrum is dominated by the spectral changes caused by the temperature increase in the sample after vibrational relaxation. From the decay of the v = 1 --> 2 induced absorption, we obtain an estimate of 390 +/- 50 fs for the vibrational lifetime, in surprisingly good agreement with recent theoretical predictions. In the v = 0 --> 1 frequency region, the decay of the absorption change involves a second, slower component, which suggests that after vibrational relaxation the system is not yet in thermal equilibrium.  相似文献   

4.
The hydrated dielectron is a highly correlated, two-electron, solvent-supported state consisting of two spin-paired electrons confined to a single cavity in liquid water. Although dielectrons have been predicted to exist theoretically and have been used to explain the lack of ionic strength effect in the bimolecular reaction kinetics of hydrated electrons, they have not yet been observed directly. In this paper, we use the extensive nonadiabatic mixed quantum/classical excited-state molecular dynamics simulations from the previous paper to calculate the transient spectroscopy of hydrated dielectrons. Because our simulations use full configuration interaction (CI) to determine the ground and excited state two-electron wave functions at every instant, our nonequilibrium simulations allow us to compute the absorption, stimulated emission (SE), and bleach spectroscopic signals of both singlet and triplet dielectrons following excitation by ultraviolet light. Excited singlet dielectrons are predicted to display strong SE in the mid infrared and a transient absorption in the near-infrared. The near-infrared transient absorption of the singlet dielectron, which occurs near the peak of the (single) hydrated electron's equilibrium absorption, arises because the two electrons tend to separate in the excited state. In contrast, excitation of the hydrated electron gives a bleach signal in this wavelength region. Thus, our calculations suggest a clear pump-probe spectroscopic signature that may be used in the laboratory to distinguish hydrated singlet dielectrons from hydrated electrons: By choosing an excitation energy that is to the blue of the peak of the hydrated electron's absorption spectrum and probing near the maximum of the single electron's absorption, the single electron's transient bleach signal should shrink or even turn into a net absorption as sample conditions are varied to produce more dielectrons.  相似文献   

5.
In plants, the oxidoreductase enzyme POR reduces protochlorophyllide (Pchlide) into chlorophyllide (Chlide), using NADPH as a cofactor. The reduction involves the transfer of two electrons and two protons to the C17═C18 double bond of Pchlide, and the reaction is initiated by the absorption of light by Pchlide itself. In this work we have studied the excited state dynamics of Pchlide dissolved in water, where it forms excitonically coupled aggregates, by ultrafast time-resolved transient absorption and fluorescence experiments performed in the 480-720 nm visible region and in the 1780-1590 cm(-1) mid-IR region. The ground state visible absorption spectrum of aqueous Pchlide red shifts and broadens in comparison to the spectrum of monomeric Pchlide in organic solvents. The population of the one-exciton state occurs at low excitation densities, of <1 photon per aggregate. We characterized the multiexciton manifolds spectra by measuring the absorption difference spectra at increasingly higher photon densities. The multiexciton states are characterized by blue-shifted stimulated emission and red-shifted excited state absorption in comparison to those of the one-exciton manifold. The relaxation dynamics of the multiexciton manifolds into the one-exciton manifold is found to occur in ~10 ps. This surprisingly slow rate we suggest is due to the intrinsic charge transfer character of the PChlide excited state that leads to solvation, stabilizing the CT state, and subsequent charge recombination, which limits the exciton relaxation.  相似文献   

6.
Ultraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.  相似文献   

7.
Thermally stimulated and isothermal depolarization currents of three low-density polyethylenes are investigated in the temperature range 80–320°K. The thermally stimulated current spectra can be analyzed in terms of a continuous relaxation time spectrum. This spectrum can be resolved into three Gaussian distributions of activation energies centered near 140°K (γ-relaxation), 205°K, and 245°K (β-relaxation) in agreement with electrical and mechanical loss factor measurements. The experimental observation are explained in terms of reorienting dipoles, coupling the molecular motion to the electrical field.  相似文献   

8.
The photoisomerisation of 1,1'-diethyl-2,2'-pyridocyanine, regarded by Brooker as the simplest cyanine, is examined in methanol by time-resolved experiments and PCM/TD-CAM-B3LYP calculations. Femtosecond transient absorption, fluorescence upconversion, and stimulated Raman scattering, all with broadband coverage, provide a panoramic view of the photoreaction. On the computational side, evolving distributions on an S(1) minimum-energy path are obtained by solving the Smoluchowski equation for drift and diffusion of torsional motion. Absorption and fluorescence bandshapes are calculated and compared to the observations; near-quantitative agreement implies that the entire S(1) path has been observed. Most importantly the global S(1) minimum, i.e. the perpendicular "phantom state" P*, can be identified and characterized in this way. Internal conversion of P* (3.7 ps), assisted by solvent equilibration, leads to the hot ground state. Within 5 ps, vibrational bands of cis and trans isomers are recognized with the help of calculated Raman spectra. The differences between observed and simulated spectra are discussed.  相似文献   

9.
Sub-micro-second time-resolved difference absorption spectra of a polar carotenoid analogue, 2-(all-trans-retinylidene)indan-1,3-dione (hereafter, we will call RetInd), were recorded in tetrahydrofuran at room temperature upon anthracene-sensitized triplet excitation. In addition to the typical Tn <-- T1 absorption spectrum of anthracene followed by that of RetInd, a novel transient species, which peaked at 670 nm, was detected. The lifetime and the population of the 670 nm species was not affected by the presence of oxygen but was quenched by the cation scavenger, triethylamine. Therefore, we have identified this species as a "cation". The transient 670 nm species was not generated by direct photoexcitation of RetInd in the absence of a triplet sensitizer. Therefore, this species was not generated via the T1 species of RetInd but rather via an "invisible state" of RetInd, which is generated by direct energy or electron transfer from T1 anthracene. This proposed pathway was confirmed by a singular-value decomposition followed by a global fitting analysis. The "cation" of RetInd shows vibrational structure in its absorption spectrum, and its lifetime was determined to be 15 micros. Chemical oxidation of RetInd in 2,2,2-trifluoroethanol (dichloromethane) produced a broad absorption band around 880 (1013) nm, which could be transformed into a shoulder around 640 (675) nm upon addition of increasing amounts of the oxidant, FeCl3. The former absorption band can be assigned to a radical cation, while the latter to a dication. Because of the spectral similarity, the 670 nm species can be assigned to the dication, and the "invisible state" is ascribed to the radical cation of RetInd. This is the first direct evidence for the production of a dication of a biological polyene moiety generated in non-halogenated solution following anthracene-sensitized excitation.  相似文献   

10.
Wave packet motion in the laser dye oxazine 1 in methanol is investigated by spectrally resolved transient absorption spectroscopy. The spectral range of 600-690 nm was accessible by amplified broadband probe pulses covering the overlap region of ground-state bleach and stimulated emission signal. The influence of vibrational wave packets on the optical signal is analyzed in the frequency domain and the time domain. For the analysis in the frequency domain an algorithm is presented that accounts for interference effects of neighbored vibrational modes. By this method amplitude, phase and decay time of vibrational modes are retrieved as a function of probe wavelength and distortions due to neighbored modes are reduced. The analysis of the data in the time domain yields complementary information on the intensity, central wavelength, and spectral width of the optical bleach spectrum due to wave packet motion.  相似文献   

11.
The aim of the study was to bring closer solid state radiation chemistry and ESR spectroscopy by looking for precursors of free radicals which give ESR signals. It has been performed using time-resolved spectrophotometry (pulse radiolysis of the solid state) and diffuse reflection spectrophotometry. Alanine has been especially considered as the most investigated amino acid, important for radiation dosimetry. Absorption of the transient (Λ maximum at 460 nm) is identified as the species during deamination. The stable absorption spectrum with the Λ maximum at 345 nm is due to the same radical as the one detected by ESR. Other amino acids: valine, threonine, glutamine and arginine show similar behaviour: microsecond spectrum of the intermediate appears always at longer wavelenghts. The transient spectrum changes into stable absorption in UV of a lower wavelenght. Along with the optical spectrum, the ESR spectrum appears, of similar stability. Also, other features indicate that the same radical is responsible for both the electronic and ESR spectrum. Some amino acids, like methionine give intensive transient absorption in the microsecond range but no ESR signal, after completion of consecutive fast reactions. In that case any optical absorption is due to the stable product of radiolysis, i.e. compounds with paired electrons only.  相似文献   

12.
An MC-LCAO-MO approach which has been proposed for open-shell systems of unsaturated hydrocarbons having degenerate MO's is applied to naphthalene, calculating its molecular geometry and electronic spectrum. The results are compared with those obtained by the usual semi-empirical SCF-CI method and with experiment. As for benzene, anthracene, phenanthrene and triphenylene, the bond lengths and the -electron energies in their ground states are calculated in the same manner. Most of the calculated bond lengths are in fairly good agreement with experiment. The total -electron energies of the ground states obtained by the MC-LCAO-MO and SCF-CI methods agree within about 0.01 eV when CI is included and within about 0.1 eV when CI is not invoked. It is found that the electronic spectrum of naphthalene obtained by the present method is in good agreement with that derived from the SCF-CI method and also explains most part of experiments. A detailed discussion is given on the calculated triplet-triplet absorption spectrum and its intensity distribution of naphthalene.  相似文献   

13.
The energy dissipation mechanism from photoexcited azobenzene (Az) was studied by femtosecond time-resolved UV absorption spectroscopy using 7-amino-4-trifluoromethylcoumarin (ATC) as a probe. The distance between the probe molecule and Az was fixed by covalently linking them together through a rigid proline spacer. Picosecond dynamics in THF solutions were studied upon excitation into the S1 state by a 100 fs laser pulse at 480 nm. Transient absorption spectra obtained for Az-Pro-ATC combined the S1 state absorption and vibrationally excited ground-state absorption of ATC. Correction of the transient spectrum of Az-Pro-ATC for the S1 absorption provided the time-resolved absorption spectrum of the ATC hot band. Three major components were observed in the transient kinetics of Az-Pro-ATC vibrational cooling. It is proposed that in ca. 0.25 ps after the excitation, the S1 state of azobenzene decays to form an initial vibrationally excited nonthermalized ground state of Az-Pro-ATC that involves vibrational modes of both azobenzene and coumarin. This hot ground state decays in ca. 0.32 ps to the next, vibrationally equilibrated, transient state by redistributing the energy within the molecule. Subsequently, the latter state cools by transferring its energy to the closest solvent molecules in ca. 5 ps; then, the energy diffuses to the bulk solvent in 13 ps.  相似文献   

14.
Abstract— Resonance Raman spectra of the picosecond bacteriorhodopsin intermediate(s) have been obtained by microbeam, flow and subtraction techniques using a synchronously pumped, cavity-dumped dye laser. Nanosecond spectra also were measured with this laser by cavity dumping without mode-locking. The picosecond spectra in the fingerprint region, which is sensitive to the configuration of the retinal chromophore, differ from spectra of the parent bR570 but could be correlated to the spectrum of bRDA550 , a “13-cis” species which has been determined from spectra of bR570 and bRDA560. The picosecond transient and bRDA550 also are similar in the 950–1050 cm-1“deuteration fingerprint” region when the medium is changed from H2O to D2O. These results suggest that trans—cis isomerization occurs during the 40-ps pulse duration. The shift relative to the parent bR570 in the ethylenic stretch region suggests that the picosecond and nanosecond transients absorb at wavelengths longer than 570 nm. The C band at 1646 cm-1 is found to shift or to broaden upon photolysis in the picosecond time scale. This might suggest a change in the electronic structure of the group and its environment on the picosecond time domain. The nanosecond spectra obtained in this work (with 15-ns pulses) are similar to the spectra previously observed on the 100-ns time scale but are slightly different from the picosecond spectrum. These data suggest that more than one transient species appears on the picosecond-to-nanosecond time scale. The temporal evolution of Raman bands in the fingerprint as well as the low energy (950–1050 cm-1) region and its implications are discussed.  相似文献   

15.
Steady-state absorption and emission spectroscopies, oxygen activation and transient spectroscopy on a single sample of synthetic pheomelanin are compared. The absorption, emission and excitation spectra of pheomelanin depend on the molecular weight (MW) of the dissolved pigment constituents. While weakly-depending on MW, the maximum of the emission excitation spectrum is approximately 400 nm. The electron paramagnetic resonance oximetry measurements show a clear increase in oxygen uptake between 338 and 323 nm, and also reveal a local enhancement around approximately 370 nm. Pump-probe absorption spectroscopy reveals that photoexcitation of pheomelanin by UVA light generates a transient absorption peak in the visible and UV regions within the instrument response. The action spectrum for the formation of the 780 nm transient species peaks at approximately 360 nm. While both transient absorption bands show the same ultrafast decay component, the 780 nm peak completely vanishes on the 10s of picosecond time scale, but the UV band shows a kinetic evolution to a subsequent intermediate. While in a similar wavelength range, the maximum of the action spectrum derived from the transient data, the emission excitation spectrum and the action spectrum for photoconsumption all differ from one another, suggesting that the chromophore responsible for each is not that same. This raises concern about comparing the results from different photochemical methodologies for melanin, which is a specific case of comparing data on systems where molecular constituents are not well defined.  相似文献   

16.
We show that the resolution of homonuclear multidimensional solid-state NMR correlation experiments can be significantly improved using transition selection and spin-state-selective polarization transfer techniques. The selection and transfer of single states allow the removal of the J-coupling contribution from the line width in both the direct and indirect spectral dimensions. This is demonstrated with a new spin-state-selective CO-Calpha correlation experiment, applied to a microcrystalline 85-residue protein. With this new sequence, all four components of the CO-Calpha cross-peaks are separated into different spectra, obtained by linear combination of four recorded data sets. Line narrowing of up to 44% was obtained on the protein sample for the spin-state-selective CO-Calpha spectrum compared to a standard spin-diffusion experiment. The new technique also allows an easy distinction between "direct" and "relayed" transfer cross-peaks.  相似文献   

17.
The one-electron reduction of 4,7-phenanthroline (P) in aqueous solutions at neutral pH has been further studied by pulse radiolysis. The spectral and kinetic properties of the transient formed due to the reaction of 4,7-phenanthroline with hydrated electron were investigated. The transient absorption spectrum obtained 5μs after the pulse exhibits a broad band with a λmax at 420 nm. The λmax is 10 nm blue shift compared with the absorption spectrum obtained at pH 2.9 where the reactant was the protonated form. The bimolecular'rate constant of the reaction of 4,7-phenanthroline with hydrated electron was 0etermined to be (2.2±0.1)×1010 dm3 mol−1 s−1. It was found that the decay of the transient was mainly following a first-order kinetics. The first-order decay rate constant was determined to be (1.25±0.1)×104s−1.  相似文献   

18.
以SF_6分子为例, 进行了多原子分予受脉冲红外激光激励之后, 其瞬态振动布居的模型计算。本模型可从实验测得的红外荧光或吸收光潜, 反演出与这些光谱相应的振动分布。反之亦然。与同类模型相比, 本模型的计算精度高, 可精确地生成振动跃迁几率矩阵, 且可计算受激光激励后分子在任一时刻的振动分布。用此模型, 首次获得SF_6分子低温条件下(20 K)的可转动分辨的吸收光谱和荧光光谱。  相似文献   

19.
The first singlet-singlet electronic system, S1<--S0, in thiophosgene has been recorded as a laser induced fluorescence (LIF) excitation and an optical-optical double resonance (OODR) spectrum under jet-cooled conditions. In the OODR process, the sum of the frequencies of the pump and probe lasers must be fixed to the energy difference between a pair of vibronic levels in the S2(v') and S0(v") states. Detection is through the fluorescence from the S2 state. The blocking of a spectrum into its four possible symmetry components is obtained by adjusting the total pump+probe energy such that it matches the energy difference between symmetry selected levels in the S2 and S0 electronic states. In this method the pump laser is used to excite a group of "hot" sequence bands that involve combinations of the nu4 and nu6 antisymmetric vibrations. The additional data that were collected by this method were used to update and refine the analyses of the spectrum. Magnetic dipole transitions are reported for the first time.  相似文献   

20.
Photoinduced electron transfer and geminate recombination are studied for the systems rhodamine 3B (R3B(+)) and rhodamine 6G (R6G(+)), which are cations, in neat neutral N,N-dimethylaniline (DMA). Following photoexcitation of R3B(+) or R6G(+) (abbreviated as R(+)), an electron is transferred from DMA to give the neutral radical R and the cation DMA(+). Because the DMA hole acceptor is the neat solvent, the forward transfer rate is very large, approximately 5x10(12) s(-1). The forward transfer is followed by geminate recombination, which displays a long-lived component suggesting several percent of the radicals escape geminate recombination. Spectrally resolved pump-probe experiments are used in which the probe is a "white" light continuum, and the full time-dependent spectrum is recorded with a spectrometer/charge-coupled device. Observations of stimulated emission (excited state decay-forward electron transfer), the R neutral radical spectrum, and the DMA(+) radical cation spectrum as well as the ground-state bleach recovery (geminate recombination) make it possible to unambiguously follow the electron transfer kinetics. Theoretical modeling shows that the long-lived component can be explained without invoking hole hopping or spin-forbidden transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号