首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Herein, we disclose the gold‐catalyzed 1,2‐diarylation of alkenes through the interplay of ligand‐enabled AuI/AuIII catalysis with the idiosyncratic π‐activation mode of gold complexes. Unlike the classical migratory‐insertion‐based approach to 1,2‐diarylation, the present approach not only circumvents the formation of direct Ar?Ar′ coupling and Heck‐type side products but more intriguingly demonstrates reactivity and selectivity complementary to those of previously known metal catalysis (Pd, Ni, or Cu). Detailed investigations to underpin the mechanistic scenario revealed oxidative addition of aryl iodides to an AuI complex to be the rate‐limiting step owing to the non‐innocent nature of the aryl alkene.  相似文献   

2.
The competition between π‐ and dual σ,π‐gold‐activation modes is revealed in the gold(I)‐catalyzed heterocyclization of 1‐(o‐ethynylaryl)urea. A noticeable effect of various ligands in gold complexes on the choice of these activation modes is described. The cationic [Au(IPr)]+ (IPr=2,6‐bis(diisopropylphenyl)imidazol‐2‐ylidene) complex cleanly promotes the π activation of terminal alkynes, whereas [Au(PtBu3)]+ favors intermediate σ,π species. In this experimental and mechanistic study, which includes kinetic and cross‐over experiments, several σ‐gold, σ,π‐gold, and other gold polynuclear reaction intermediates have been isolated and identified by NMR spectroscopy, X‐ray diffraction, or MALDI spectrometry. The ligand control in the simultaneous or alternative π‐ and σ,π‐activation modes is also supported by deuterium‐labeling experiments.  相似文献   

3.
The aurophilicity exhibited by AuI complexes depends strongly on the nature of the supporting ligands present and the length of the Au–element (Au—E) bond may be used as a measure of the donor–acceptor properties of the coordinated ligands. A binuclear iron–gold complex, [1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene‐2κC2]dicarbonyl‐1κ2C‐(1η5‐cyclopentadienyl)gold(I)iron(II)(AuFe) benzene trisolvate, [AuFe(C5H5)(C27H36N2)(CO)2]·3C6H6, was prepared by reaction of K[CpFe(CO)2] (Cp is cyclopentadienyl) with (NHC)AuCl [NHC = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene]. In addition to the binuclear complex, the asymmetric unit contains three benzene solvent molecules. This is the first example of a two‐coordinated Au atom bonded to an Fe and a C atom of an N‐heterocyclic carbene.  相似文献   

4.
A series of dinuclear gold σ,π‐propyne acetylide complexes were prepared and tested for their catalytic ability in dual gold catalysis that was based on the reaction of an electrophilic π‐complex of gold with a gold acetylide. The air‐stable and storable catalysts can be isolated as silver‐free catalysts in their activated form. These dual catalysts allow a fast initiation phase for the dual catalytic cycles without the need for additional additives for acetylide formation. Because propyne serves as a throw‐away ligand, no traces of the precatalyst are generated. Based on the fast initiation process, side products are minimized and reaction rates are higher for these catalysts. A series of test reactions were used to demonstrate the general applicability of these catalysts. Lower catalyst loadings, faster reaction rates, and better selectivity, combined with the practicability of these catalysts, make them ideal catalysts for dual gold catalysis.  相似文献   

5.
The synthesis of air‐ and moisture‐stable trinuclear mixed‐valence gold(I)/gold(0) clusters is described. They promote the catalytic carbonylation of amines under relatively mild conditions. The synthetic route leading to the trinuclear clusters involves a simple ligand exchange from the readily available μ3‐oxo‐[(Ph3PAu)3O]+ complex. This synthetic method paves the way for the preparation of a variety of mixed‐valence gold(I)/gold(0) polynuclear clusters. Moreover, the well‐defined nature of the complexes demonstrates that the catalytic process involves a rare example of a definite change of oxidation state of gold from Au02AuI to AuI3.  相似文献   

6.
The tuning of metal–metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox‐active PNO ligand to AuI followed by homoleptic metalation of the NO pocket with NiII affords a unique trinuclear Au–Ni–Au complex. This species features two antiferromagnetically coupled ligand‐centered radicals and a double intramolecular d8–d10 interaction, as supported by spectroscopic, single‐crystal X‐ray diffraction, and computational data. A corresponding cationic dinuclear Au–Ni analogue with a stronger d8–d10 interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au–Ni–Au complex facilitates electrocatalytic C?X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox‐active ligand framework, an available coordination site at gold, and the nature of the nickel–gold interaction appear to be essential for this reactivity.  相似文献   

7.
The dinuclear AuI complex containing the 4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene (xantphos) ligand and trifluoroacetate anions exists in a solvent‐free form, [μ‐4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene]bis[(trifluoroacetato)gold(I)], [Au2(C2F3O2)2(C39H32OP2)], (I), and as a dichloromethane solvate, [Au2(C2F3O2)2(C39H32OP2)]·0.58CH2Cl2, (II). The trifluoroacetate anions are coordinated to the AuI centres bridged by the xantphos ligand in both compounds. The AuI atoms are in distorted linear coordination environments in both compounds. The phosphine substituents are in a syn arrangement in the xantphos ligand, which facilitates the formation of short aurophilic Au...Au interactions of 2.8966 (8) Å in (I) and 2.9439 (6) Å in (II).  相似文献   

8.
Monometallic gold(I)‐alkynyl‐helicene complexes ( 1 a , b ) and bimetallic gold(I)‐alkynyl‐helicene architectures featuring the presence ( 2 a , b ) or absence ( 3 a , b ) of aurophilic intramolecular interactions were prepared by using different types of phosphole ligands (mono‐phosphole L1 or bis‐phospholes L2 , 3 ). The influence of the AuI d10 metal center(s) on the electronic, photophysical, and chiroptical properties of these unprecedented phosphole‐gold(I)‐alkynyl‐helicene complexes was examined. Experimental and theoretical results highlight the importance of ligand‐to‐ligand‐type charge transfers and the strong effect of the presence or absence of AuI–AuI interactions in 2 a , b .  相似文献   

9.
This report describes the synthesis and characterization of novel N‐heterocyclic carbene (NHC)–gold(I) complexes and their bioconjugation to the CCRF‐CEM‐leukemia‐specific aptamer sgc8c. Successful bioconjugation was confirmed by the use of fluorescent tags on both the NHC–AuI complex and the aptamer. Cell‐viability assays indicated that the NHC–AuI–aptamer conjugate was more cytotoxic than the NHC–gold complex alone. A combination of flow cytometry, confocal microscopy, and cell‐viability assays provided clear evidence that the NHC–AuI–aptamer conjugate was selective for targeted CCRF‐CEM leukemia cells.  相似文献   

10.
A highly asymmetric AuIII η3‐allyl complex has been generated by treating Au(η1‐allyl)Br(tpy) (tpy=2‐(p‐tolyl)pyridine) with AgNTf2. The resulting η3‐allyl complex has been characterized by NMR spectroscopy and X‐ray crystallography. DFT calculations and variable temperature 1H NMR suggest that the allyl ligand is highly fluxional.  相似文献   

11.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

12.
The structural features that render gold nanoclusters intrinsically fluorescent are currently not well understood. To address this issue, highly fluorescent gold nanoclusters have to be synthesized, and their structures must be determined. We herein report the synthesis of three fluorescent Au24(SR)20 nanoclusters (R=C2H4Ph, CH2Ph, or CH2C6H4tBu). According to UV/Vis/NIR, differential pulse voltammetry (DPV), and X‐ray absorption fine structure (XAFS) analysis, these three nanoclusters adopt similar structures that feature a bi‐tetrahedral Au8 kernel protected by four tetrameric Au4(SR)5 motifs. At least two structural features are responsible for the unusual fluorescence of the Au24(SR)20 nanoclusters: Two pairs of interlocked Au4(SR)5 staples reduce the vibration loss, and the interactions between the kernel and the thiolate motifs enhance electron transfer from the ligand to the kernel moiety through the Au?S bonds, thereby enhancing the fluorescence. This work provides some clarification of the structure–fluorescence relationship of such clusters.  相似文献   

13.
Supramolecular ensembles adopting ring‐in‐ring structures are less developed compared with catenanes featuring interlocked rings. While catenanes with inter‐ring closed‐shell metallophilic interactions, such as d10–d10 AuI–AuI interactions, have been well‐documented, the ring‐in‐ring complexes featuring such metallophilic interactions remain underdeveloped. Herein is described an unprecedented ring‐in‐ring structure of a AuI‐thiolate Au12 cluster formed by recrystallization of a AuI‐thiolate Au10 [2]catenane from alkane solvents such as hexane, with use of a bulky dibutylfluorene‐2‐thiolate ligand. The ring‐in‐ring AuI‐thiolate Au12 cluster features inter‐ring AuI–AuI interactions and underwent cluster core change to form the thermodynamically more stable Au10 [2]catenane structure upon dissolving in, or recrystallization from, other solvents such as CH2Cl2, CHCl3, and CH2Cl2/MeCN. The cluster‐to‐cluster transformation process was monitored by 1H NMR and ESI‐MS measurements. Density functional theory (DFT) calculations were performed to provide insight into the mechanism of the “ring‐in‐ring? [2]catenane” interconversions.  相似文献   

14.
The blue copper complex [Cu2(H2O)2(phen)2(OH)2][Cu2(phen)2(OH)2(CO3)2] · 10 H2O, which was prepared by reaction of 1,10‐phenanthroline monohydrate, CuCl2 · 2 H2O and Na2CO3 in the presence of succinic acid in CH3OH/H2O at pH = 13.0, crystallized in the triclinic space group P1 (no. 2) with cell dimensions: a = 9.515(1) Å, b = 12.039(1) Å, c = 12.412(2) Å, α = 70.16(1)°, β = 85.45(1)°, γ = 81.85(1)°, V = 1323.2(2) Å3, Z = 1. The crystal structure consists of dinuclear [Cu2(H2O)2(phen)2(OH)2]2+ complex cations, dinuclear [Cu2(phen)2(OH)2(CO3)2]2– complex anions and hydrogen bonded H2O molecules. In both the centrosymmetric dinuclear cation and anion, the Cu atoms are coordinated by two N atoms of one phen ligand, three O atoms of two μ‐OH groups and respectively one H2O molecule or one CO32– anion to complete distorted [CuN2O3] square‐pyramids with the H2O molecule or the CO32– anion at the apical position (equatorial d(Cu–O) = 1.939–1.961 Å, d(Cu–N) = 2.026–2.051 Å and axial d(Cu–O) = 2.194, 2.252 Å). Two adjacent [CuN2O3] square pyramids are condensed via two μ‐OH groups. Through the interionic hydrogen bonds, the dinuclear cations and anions are linked into 1D chains with parallel phen ligands on both sides. Interdigitation of phen ligands of neighboring 1D chains generated 2D layers, between which the hydrogen bonded water molecules are sandwiched.  相似文献   

15.
A mononuclear bis(NHC)/AuI (NHC=N‐heterocyclic carbene) cationic complex with a rigid bis(phosphane)‐functionalized NHC ligand (PCNHCP) was used to construct linear Au3 and Ag2Au arrays, a Au5 cluster with two intersecting crosslike Au3 arrays, and an unprecedented Cu6 complex with two parallel Cu3 arrays. The impact of metallophilic interactions on photoluminescence was studied experimentally.  相似文献   

16.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ? 2 ) or a [3×3] cluster ( 1 ? 2 ? 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

17.
Aurophilic interactions (AuI???AuI) are crucial in directing the supramolecular self‐assembly of many gold(I) compounds; however, this intriguing chemistry has been rarely explored for the self‐assembly of nanoscale building blocks. Herein, we report on studies on aurophilic interactions in the structure‐directed self‐assembly of ultrasmall gold nanoparticles or nanoclusters (NCs, <2 nm) using [Au25(SR)18]? (SR=thiolate ligand) as a model cluster. The self‐assembly of NCs is initiated by surface‐motif reconstruction of [Au25(SR)18]? from short SR‐[AuI‐SR]2 units to long SR‐[AuI‐SR]x (x>2) staples accompanied by structure modification of the intrinsic Au13 kernel. Such motif reconstruction increases the content of AuI species in the protecting shell of Au NCs, providing the structural basis for directed aurophilic interactions, which promote the self‐assembly of Au NCs into well‐defined nanoribbons in solution. More interestingly, the compact structure and effective aurophilic interactions in the nanoribbons significantly enhance the luminescence intensity of Au NCs with an absolute quantum yield of 6.2 % at room temperature.  相似文献   

18.
Heteroarylation of alkenes with aryl iodides was efficiently achieved with a (MeDalphos)AuCl complex through AuI/AuIII catalysis. The possibility to combine oxidative addition of aryl iodides and π‐activation of alkenes at gold is demonstrated for the first time. The reaction is robust and general (>30 examples including internal alkenes, 5‐, 6‐, and 7‐membered rings). It is regioselective and leads exclusively to trans addition products. The (P,N) gold complex is most efficient with electron‐rich aryl substrates, which are troublesome with alternative photoredox/oxidative approaches. In addition, it provides a very unusual switch in regioselectivity from 5‐exo to 6‐endo cyclization between the Z and E isomers of internal alkenols.  相似文献   

19.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

20.
Strategies for the synthesis of highly electrophilic AuI complexes from either hydride‐ or chloride‐containing precursors have been investigated by employing sterically encumbered Dipp‐substituted expanded‐ring NHCs (Dipp=2,6‐iPr2C6H3). Thus, complexes of the type (NHC)AuH have been synthesised (for NHC=6‐Dipp or 7‐Dipp) and shown to feature significantly more electron‐rich hydrides than those based on ancillary imidazolylidene donors. This finding is consistent with the stronger σ‐donor character of these NHCs, and allows for protonation of the hydride ligand. Such chemistry leads to the loss of dihydrogen and to the trapping of the [(NHC)Au]+ fragment within a dinuclear gold cation containing a bridging hydride. Activation of the hydride ligand in (NHC)AuH by B(C6F5)3, by contrast, generates a species (at low temperatures) featuring a [HB(C6F5)3]? fragment with spectroscopic signatures similar to the “free” borate anion. Subsequent rearrangement involves B?C bond cleavage and aryl transfer to the carbophilic metal centre. Under halide abstraction conditions utilizing Na[BArf4] (Arf=C6H3(CF3)2‐3,5), systems of the type [(NHC)AuCl] (NHC=6‐Dipp or 7‐Dipp) generate dinuclear complexes [{(NHC)Au}2(μ‐Cl)]+ that are still electrophilic enough at gold to induce aryl abstraction from the [BArf4]? counterion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号