首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method of reductive amination without an external hydrogen source is reported. Carbon monoxide is used as the reductant. The reaction proceeds efficiently for a variety of carbonyl compounds and amines at low catalyst loadings and is mechanistically interesting as it does not seem to involve molecular hydrogen.  相似文献   

2.
An aminated series: a well-defined iron-catalyzed reductive amination reaction of aldehydes and ketones with aliphatic amines using molecular hydrogen is presented. Under mild conditions, good yields for a broad range of alkyl ketones as well as aldehydes were achieved.  相似文献   

3.
A new and highly efficient homogeneous [Ph3PAuCl]/AgOTf catalytic system was developed in N-alkylation reaction of primary amines with alcohols through a hydrogen autotransfer process. This Au(I) catalytic system shows excellent selectivity for mono-alkylation of primary amines with benzyl alcohol under moderate temperature of 100 °C (only secondary amines as product). The possible mechanism of this hydrogen autotransfer reaction with the catalytic system was proposed.  相似文献   

4.
Different behaviors of aromatic and nonaromatic amines with respect to a change in the structure of the salt and variations in the reaction conditions were revealed in a study of the reaction of 2-arylazobenzimidazolium quaternary salts with amines. Aliphatic and secondary cyclic amines react at comparable rates via pathways involving cleavage of the azo group and replacement of the hydrogen in the para position relative to the azo group. The reaction with aromatic amines proceeds primarily via the amination pathway, and a methyl group in the meta position relative to the azo group facilitates replacement of the hydrogen atom significantly.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 817–824, June, 1982.  相似文献   

5.
A computational study, using density functional theory calibrated against higher-level methods, has been undertaken to evaluate tertiary amines whose radical cations might lose hydrogen atoms from positions other than the alpha carbons. The purpose was to find photochemically activated reducing agents for carbon dioxide that could be regenerated in a separate photochemical reaction. The calculations have revealed two reactions that might be suitable for this purpose. In one, the nitrogen of the radical cation makes a bond to a remote carbon with simultaneous displacement of a hydrogen atom. In the other, a remote hydrogen atom is transferred to the nitrogen, thereby creating a distonic radical cation that can lose a hydrogen atom beta to the radical site. The latter reaction is found to be particularly favorable since it apparently involves a surface crossing that allows the amine radical cation and CO2 radical anion to transform smoothly to a ground-state formate ion and an alkene. A number of structural motifs are investigated for the amines. The lower ionization potential of aromatic amines, compared to their aliphatic analogues, is desirable in that it could permit the use of longer wavelength light to drive the reaction. However, a thermochemical cycle shows that the reduction in ionization potential must be matched by an increase in proton affinity of the amine if the intramolecular hydrogen transfer is to be exothermic. Most aromatic amines do not satisfy this criterion and, hence, would have to rely on the displacement reaction for hydrogen-atom release if they were to be used as renewable reagents for CO2 reduction. Examples of specific aromatic and aliphatic tertiary amines that should be suitable for the purpose are presented, and their relative merits and weaknesses are discussed.  相似文献   

6.
UV irradiation in the presence of thiol enables the performance of highly efficient aliphatic amines racemization, under mild conditions at 30 degrees C. The reaction proceeds via the reversible generation of prochiral alpha-aminoalkyl radicals. The latter may result either from a redox process between the thiyl radical and the amine or from direct hydrogen atom abstraction by thiyl radical. As hydrogen atom donor, the thiol plays a crucial role. While the racemization of both primary and secondary amines were fast processes, the racemization of tertiary amines was sluggish. A tentative rationale is based on the photostimulated amine-catalyzed oxidation of the thiol into the corresponding disulfide, which makes the hydrogen atom donor concentration in the reaction medium drop up to trace amount at a rate that depends on the nature of the amine.  相似文献   

7.
Efficient synthesis of amides directly from esters and amines is achieved under mild, neutral conditions with the liberation of molecular hydrogen. Both primary and secondary amines can be utilized. This unprecedented, general, environmentally benign reaction is homogeneously catalyzed under neutral conditions by a dearomatized ruthenium-pincer PNN complex and proceeds in toluene under an inert atmosphere with a high turnover number (up to 1000). PNP analogues do not catalyze this transformation, underlining the crucial importance of the amine arm of the pincer ligand. A mechanism is proposed involving metal-ligand cooperation via aromatization-dearomatization of the pyridine moiety and hemilability of the amine arm.  相似文献   

8.
Doubly charged ion mass spectra of 22 amines (2–10 carbon atoms) were determined using an Hitachi RMU-7L double focusing mass spectrometer. Molecular ions were not observed in the spectra of aliphatic amines. The most intense product ion peaks in the spectra of lower molecular weight amines resulted from hydrogen elimination from the molecular ion; however, as amine molecular weight increased the largest peaks resulted from both hydrogen and heavy atom elimination from the molecular ion. Dominant ions in the doubly charged ion spectra of lower molecular weight aliphatic amines were from reactions of [CnH3N]2+ (n:=2, 3, 4) type ions. The spectra of higher molecular weight aliphatic amines spanned a wide mass range. Appearance energies for some of the more prominent ions were measured in the range from 25 to 49 eV. A geometry optimized quantum mechanical self-consistent field molecular orbital treatment was used to compute the energies and structural parameters of prominent ions in the doubly charged ion mass spectra.  相似文献   

9.
The potential application of the primary amine/nitrile pair as a liquid organic hydrogen carrier (LOHC) has been evaluated. Ruthenium complexes of formula [(p‐cym)Ru(NHC)Cl2] (NHC=N‐heterocyclic carbene) catalyze the acceptorless dehydrogenation of primary amines to nitriles with the formation of molecular hydrogen. Notably, the reaction proceeds without any external additive, under air, and under mild reaction conditions. The catalytic properties of a ruthenium complex supported on the surface of graphene have been explored for reutilization purposes. The ruthenium‐supported catalyst is active for at least 10 runs without any apparent loss of activity. The results obtained in terms of catalytic activity, stability, and recyclability are encouraging for the potential application of the amine/nitrile pair as a LOHC. The main challenge in the dehydrogenation of benzylamines is the selectivity control, such as avoiding the formation of imine byproducts due to transamination reactions. Herein, selectivity has been achieved by using long‐chain primary amines such as dodecylamine. Mechanistic studies have been performed to rationalize the key factors involved in the activity and selectivity of the catalysts in the dehydrogenation of amines. The experimental results suggest that the catalyst resting state contains a coordinated amine.  相似文献   

10.
碲试剂作为还原剂已得到较广泛的应用,Yamashita、周洵钧将NaHTe用于羰基化合物还原胺化为二级胺,Kambe等近期用H_2Te还原烯胺、亚胺到相应的胺,我们曾用NaHTe将二级胺与羰基化合物还原烷基化。本文采用不同二级胺进一步研究发现,脂肪环胺与醛的反应效果较好,同一条件下烯胺也可被还原,反应条件温和,脯氨酸酯还原烷基化的产物不发生明显消旋化(表1,3),可应用于氨基酸类反应。  相似文献   

11.
We report a Rh-catalyzed hydroaminomethylation reaction of terminal alkenes in glycerol that proceeds efficiently under mild conditions to produce the corresponding amines in relatively high selectivity towards linear amines, moderate to excellent yields by using a low catalyst loading (1 mol % [Rh], 2 mol % phosphine) and relative low pressure (H2/CO, 1:1, total pressure 10 bar). This work sheds light on the importance of glycerol in enabling enamine reduction via hydrogen transfer. Moreover, evidence for the crucial role of Rh as chemoselective catalyst in the condensation step has been obtained for the first time in the frame of the hydroaminomethylation reaction by precluding deleterious aldol condensation reactions. The hydroaminomethylation proceeds under a molecular regime; the outcome of catalytically active species into metal-based nanoparticles renders the catalytic system inactive.  相似文献   

12.
The implementation of inexpensive, Earth‐abundant metals in typical noble‐metal‐mediated chemistry is a major goal in homogeneous catalysis. A sustainable or green reaction that has received a lot of attention in recent years and is preferentially catalyzed by Ir or Ru complexes is the alkylation of amines by alcohols. It is based on the borrowing hydrogen or hydrogen autotransfer concept. Herein, we report on the Co‐catalyzed alkylation of aromatic amines by alcohols. The reaction proceeds under mild conditions, and selectively generates monoalkylated amines. The observed selectivity allows the synthesis of unsymmetrically substituted diamines. A novel Co complex stabilized by a PN5P ligand catalyzes the reactions most efficiently.  相似文献   

13.
The borrowing hydrogen strategy has been applied to the ethylation of imines with an air‐stable iron complex as precatalyst. This approach opens new perspectives in this area as it enables the synthesis of unsymmetric tertiary amines from readily available substrates and ethanol as a C2 building block. A variety of imines bearing electron‐rich aryl or alkyl groups at the nitrogen atom could be efficiently reductively alkylated without the need for molecular hydrogen. The mechanism of this reaction, which shows complete selectivity for ethanol over other alcohols, has been studied experimentally and by means of DFT computations.  相似文献   

14.
氨基改性聚醚型聚硅氧烷的制备及其柔软性能研究   总被引:13,自引:0,他引:13  
用含氢硅油、烯丙基缩水甘油醚、烯基聚醚的硅氢化加成产物-聚醚/环氧硅油与胺反应制得了氨基改性聚醚型聚硅氧烷(APEPS),对其结构与性能进行了表征和研究。结果表明,含氢硅油分子量、有机胺结构、氨基改性聚醚型聚硅氧烷的硅含量对APEPS性能有影响。提高硅含量、增加氨值,可改善APEPS的柔软性与滑爽感,但对织物的吸湿性影响不大。  相似文献   

15.
The reaction of tetrafunctional diamines and bifunctional amines with monoepoxy compounds was investigated by gel-permeation chromatography. At a stoichiometrically equivalent ratio of the functional groups or excess of amine, the consecutive reaction of the epoxide groups with the hydrogen atoms of the amino groups is the only reaction that is taking place; if epoxide is present in excess, the OH groups formed in the reaction are gradually added to the epoxide groups. The ratio of the rate constants of the reaction of the epoxy group with the hydrogen atoms of the primary and secondary amino group was calculated from the concentrations of the reaction products at various excess amounts of amines. The ratio is in good accord with the value calculated from the gel points and limiting stoichiometric ratios in the curing of diepoxides with diamines.  相似文献   

16.
Efficient aerobic oxidation of amines was developed by the use of a biomimetic coupled catalytic system involving a ruthenium-induced dehydrogenation. The principle for this aerobic oxidation is that the electron transfer from the amine to molecular oxygen occurs stepwise via coupled redox systems and this leads to a low-energy electron transfer. A substrate-selective ruthenium catalyst dehydrogenates the amine and the hydrogen atoms abstracted are transported to an electron-rich quinone (2a). The hydroquinone thus formed is subsequently reoxidized by air with the aid of an oxygen-activating [Co(salen)]-type complex (27). The reaction can be used for the preparation of ketimines and aldimines in good to high yields from the appropriate corresponding amines. The reaction proceeds with high selectivity, and the catalytic system tolerates air without being deactivated. The rate of the dehydrogenation was studied by using quinone 2a as the terminal oxidant. A catalytic cycle in which the amine promotes the dissociation of the dimeric catalyst 1 is presented.  相似文献   

17.
Synthesis of amino-sugars using reductive amination reactions. Preliminary communication Treatment of aldehydo- or keto-sugars with primary or secondary amines and hydrogen in the presence of a catalyst (Pd/C) gave with good to excellent yields (67–96%) the expected secondary or tertiary amines. Primary amines can be obtained by using benzylamine, a hydrogenolysis taking place during the reaction.  相似文献   

18.
Thiols mediate the radical isomerization of allylic amines into enamines. The reaction results in the cleavage of the allylic C-N bond, after treatment with aqueous HCl. The mechanism involves the abstraction of an allylic hydrogen alpha to nitrogen by thiyl radical, followed by a return hydrogen transfer from the thiol to the carbon gamma to nitrogen in the intermediate allylic radical. The scope and limitations of the reaction with respect to the nature of the thiol, to the structure of the allylic chain, and to the nature of the substituents at nitrogen were investigated. The experimental results were interpreted on the ground of DFT calculations of the C-Halpha BDE in the starting allylic amines, and of the C-Hgamma BDE in the resulting enamines. The efficiency of the initial hydrogen transfer is the first requirement for the reaction to proceed. A balance must be found between the S-H BDE and the two above-mentioned C-H BDEs. The incidence of stereoelectronic factors was analyzed through NBO calculations performed on the optimized geometries of the starting allylic amines. Additional calculations of the transition structures and subsequent tracing of the reaction profiles were performed for the abstraction of Halpha from both the allyl and the prenyl derivatives by p-TolS(*). The latter allowed us to estimate the rate constant for the abstraction of hydrogen by thiyl radical from an N-prenylamine and an N-allylamine.  相似文献   

19.
[reaction: see text] A simple, selective, rapid, and efficient procedure for the synthesis of secondary amines from the reductive alkylation of either aliphatic or aromatic nitro compounds and the corresponding amines is reported. Ammonium formate is used as the hydrogen source and Pd/C as the hydrogen transfer catalyst. The reaction is carried out at room temperature. The rate differences for the preferential formation of secondary over tertiary products are due to both steric and electronic factors.  相似文献   

20.
The alkylation of aryl amines using cyclic amines such as pyrrolidine proceeds via borrowing hydrogen methodology in the presence of 1 mol % Shvo catalyst. During the reaction multiple carbon-nitrogen cleavage and formation occurred. This novel reaction sequence leads to N-aryl-pyrrolidines and -piperidines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号