首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
DOPO and boron nitride (BN) fillers with different particle sizes and several loadings were employed to improve the properties of cyanate ester (CE) resin. The effects of BN content and particle size on the thermal conductivity of the BN‐DOPO/CE ternary composites were discussed. The influence of enhancing the thermal conductivity of the ternary composites on their flame retardancy was studied. The consequences showed that increasing the thermal conductivity of BN‐DOPO/CE composites had an active impact on their flame retardancy. Approving flame retardancy of the ternary composites was certified by the high limiting oxygen index (LOI), UL‐94 rating of V‐0, and low heat release rate (HRR) and total heat release (THR). For instance, in contrast with pure CE matrix, peak of HRR (pk‐HRR), average of HRR (av‐HRR), THR, and average of effective heat of combustion (av‐EHC) of CEP/BN0.5 μm/10 composite were decreased by 51.7%, 33.8%, 18.7%, and 18.9%, respectively. Thermal gravimetry analysis (TGA) showed that the addition of BN fillers improves the thermal stability of the composites. Moreover, the ternary composites possess good dielectric properties. Their dielectric constants (ε) are less than 3, and dielectric loss tangent (tgδ) values are lower than neat CE resin.  相似文献   

2.
The flammability of polypropylene (PP) composites containing intumescent flame retardant additives, i.e. melamine phosphate (MP) and pentaerythritol (PER), dipentaerythritol (DPER) or tripentaerythritol (TPER) was characterized by limiting oxygen index (LOI), UL 94 and the cone calorimeter, and the thermal degradation of the composites was studied using thermogravimetric analysis (TG) and real time Fourier transform infrared (RTFTIR). It has been found that the PP composite containing only MP does not show good flame retardancy even at 40% additive level. Compared with the PP/MP binary composite, the LOI values of the PP/MP/PER (PP/MP/DPER or PP/MP/TPER) ternary composites at the same additive loading are all increased, and UL 94 ratings of most ternary composites studied are raised to V-0 from no rating (PP/MP). The cone calorimeter results show that the heat release rate and smoke emission of some ternary composites decrease in comparison with the binary composite. It is noted from the TG data that initial decomposition temperatures of ternary composites are lower than that of the binary composite. The RTFTIR study indicates that the PP/IFR composites have higher thermal oxidative stability than the pure PP.  相似文献   

3.
The charring agent (CNCA‐DA) containing triazine and benzene rings was combined with ammonium polyphosphate (APP) to form intumescent flame retardant (IFR), and it was occupied to modify polylactide (PLA). The flame retardant properties and mechanism of flame retardant PLA composites were investigated by the limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis, microscale combustion calorimetry, scanning electron microscopy, laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy. The analysis from LOI and UL‐94 presented that the IFR was very effective in flame retardancy of PLA. When the weight ratio of APP to CNCA‐DA was 3:1, and the IFR loading was 30%, the IFR showed the best effect, and the LOI value reached 45.6%. It was found that when 20 wt% IFR was loaded, the flame retardancy of PLA/IFR still passed UL‐94 V‐0 rating, and its LOI value reached 32.8%. The microscale combustion calorimetry results showed that PLA/IFR had lower heat release rate, total heat release, and heat release capacity than other composites, and there was an obvious synergistic effect between APP and CNCA‐DA for PLA. IFR containing APP/CNCA‐DA had good thermal stability and char‐forming ability with the char residue 29.3% at 800°C under N2 atmosphere. Scanning electron microscopy observation further indicated that IFR could promote forming continuous and compact intumescent char layer. The laser Raman spectroscopy analysis and X‐ray photoelectron spectroscopy analysis results indicated that an appropriate graphitization degree of the residue char was formed, and more O and N were remained to form more cross‐linking structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The performances of the novel intumescent flame retardant (IFR) polypropylene (PP) composites containing melamine phosphate (MP) and tris(1‐oxo‐2,6,7‐trioxa‐1‐phosphabicyclo[2,2,2]methylene‐4)phosphate (TPMP) were investigated. The flame retardancy of IFR‐PP system was characterized by limiting oxygen index (LOI) and UL 94 and cone calorimeter. The morphology of the char obtained after cone calorimeter testing was studied by scanning electron microscopy (SEM). The thermal oxidative degradation (TOD) of the composites was investigated by using thermogravimetric analysis (TGA) and real‐time Fourier transform infrared spectroscopy (RT‐FTIR). Compared with the PP/ TPMP or PP/ MP binary composite, at the same addition level, the LOI values of the PP/MP/TPMP ternary composites increase and reach V‐0 at the suitable MP/TPMP ratio. The results of TGA and RT‐FTIR showed the existence of the interaction between IFR and PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The calcium alginate/CaCO3 composites were prepared via in situ method, and their flame retardancy and thermal degradation mechanism were investigated. The composites as-prepared were analyzed by the scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, thermogravimetric analysis (TG), vertical burning (UL-94), cone calorimeter (CONE) and X-ray diffraction (XRD). The SEM demonstrated that the inorganic calcium salt in the composites had great influence on the morphology of materials. The TG results indicated the thermal stability of the composites was remarkably improved by 70 °C, compared with that of the calcium alginate. The combustion behaviors of the materials were assessed by CONE. In comparison with those of the calcium alginate, the peak heat release rate and total heat release of the composites decreased by 40.42 and 62.59%, respectively. The different degradation mechanisms of the calcium alginate and the composites were first proposed in detail based on the TG, XRD and SEM results. The composites exhibited excellent thermal stability and flame retardancy, which is promising to be developed for the application as flame-retardant materials in the future.  相似文献   

6.
The flame retardancy and thermal degradation properties of polypropylene (PP) containing intumescent flame retardant additives, i.e. melamine pyrophosphate (MPyP) and charring‐foaming agent (CFA) were characterized by limiting oxygen index (LOI), UL 94, cone calorimeter, microscale combustion calorimetry, and thermogravimetric analysis (TGA). It has been found that the PP material containing only MPyP does not show good flame retardancy even at 30% additive level. Compared with the PP/MPyP binary system, the LOI values of the PP/MPyP/CFA ternary materials at the same additive loading are all increased, and UL 94 rating is raised to V‐0 from no rating (PP/MPyP). The cone calorimeter results show that the heat release rate and mass loss rate of some ternary materials decrease in comparison with the binary material. The microscale combustion calorimetry results indicate that the sample containing 22.5 wt% MPyP and 7.5 wt% CFA has the lowest heat release rate among all samples. The TGA results show that the thermal stability of the materials increases with the addition of MPyP, while decreases with the addition of CFA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A novel phosphorus‐containing silicone flame retardant (PDPSI) was prepared by Mannish reaction, and a series of PDPSI/PET composites were prepared by melt blending method. The nuclear magnetic resonance (1H NMR), Fourier transformation infrared (FTIR), and the thermogravimetric analyzer (TGA) results indicated that PDPSI showed network structure and owned good thermal stability, with the char residue of 62.2% at 800°C. The flame retardancy of PDPSI/PET composites was characterized by limiting oxygen index (LOI), vertical burning tests (UL‐94), and cone calorimeter (CCT). The results revealed that the addition amount of PDPSI was 5%, the LOI value of PDPSI/PET composites increased to 27.3%, and UL‐94 test passed V‐0 rating. When the PDPSI loading was 3%, PET composites showed excellent flame retardancy and smoke suppression, with a decrease in the peak heat release rate (PHRR) by 71.19% and the total smoke release (TSP) reduced from 14.4 to 11.1m2. The scanning electron microscopy (SEM) and FTIR results of char residue demonstrated that the flame‐retardant mechanism of PDPSI was solid phase flame retardant. PDPSI catalyzed the aromatization reaction of PET to promote the formation of a dense and continuous carbon layer, finally improving the flame retardancy and smoke suppression properties of PET.  相似文献   

8.
Effect of metallic oxides on flame retardancy and the thermal stability of styrene butadiene rubber (SBR) composites based on ammonium polyphosphate (APP) and pentaerythritol (PER) was studied by the limiting oxygen index (LOI), UL 94, the cone calorimeter tests, and thermogravimetry analysis (TGA), respectively. Scanning electron microscopy (SEM) and wide‐angle X‐ray diffraction (WAXD) were used to analyze the morphological structure and the component of the residue chars formed from the SBR composites accordingly. The addition of zirconium dioxide (ZrO2) at a loading of 3.4 phr could improve the UL 94 test rating of the composite to V‐0. The TGA data illustrated that the metallic oxides could enhance the thermal stability of the SBR/Intumescent flame retardant additives (IFRs) composites at high temperature and increase the residue. Cone calorimeter test gave much clear evidence that the incorporation of ZrO2 into SBR/IFRs composites resulted in the significant deduction of the heat release rate (HRR) values, and the SEM images showed that the char layers of the composites containing the metallic oxides became more compact. From the WAXD pattern, zirconium phosphate (ZrP2O7) may be formed by the reaction between ZrO2 and APP. Due to the addition of ZrO2 and the formation of ZrP2O7, the flame retardancy of the composite was improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The flame retardancy mechanisms of a novel polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO‐POSS) in polycarbonate/acrylonitrile‐butadiene‐styrene (PC/ABS) blends are discussed. The thermal stability of PC/ABS composites with different DOPO‐POSS loadings are investigated by TGA and the enhancement of the thermal stability could be found at high temperature range. Their fire behavior is tested by the LOI, UL‐94, and cone calorimeter. Excellent flame retardancy of PC/ABS composites have been discovered with 10 wt% DOPO‐POSS loading. TGA‐FTIR, FTIR, XPS, and SEM, respectively, are used to characterize the gaseous products and the condensed residue in thermal decomposition, and the micro‐structure of the chars from cone calorimeter tests. The decomposition of PC/ABS with 10 wt% DOPO‐POSS shows significant changes compared with PC/ABS by TGA, FTIR, TGA‐FTIR, and XPS analysis. The enhancement of the thermal‐oxidative stability of PC/ABS with DOPO‐POSS is attributed to the interaction between DOPO‐POSS and PC/ABS at high temperature, which might be the key for improvement of the flame retardancy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.

Nanocarbon black (CB) was introduced into ethylene-vinyl acetate/brucite (EM) composites to investigate the synergistic effect of CB and metal hydroxide on improving the flame retardancy of EVA. Flammability properties of the as-prepared EVA composites were investigated by thermogravimetric analysis, limiting oxygen index (LOI), UL-94 test and cone calorimetry test. The results indicated that the optimum mass ratio of CB/brucite was 1/54, at which the EVA composites displayed dramatic improvement on thermal stability and flame retardancy. The LOI value was as high as 35.3%, the UL-94 passed the V-0 rating, and the peak heat release rate reduced 79% in comparison with pure EVA. Based on the morphology and structure analysis for residue chars, the flame-retardant mechanism was attributed mainly to the positive synergistic effect of CB and brucite on promoting the formation of better carbon protective layer during combustion.

  相似文献   

12.
The main aim of this work was to investigate the synergistic effect of expandable graphite (EG) and aluminum hypophosphite (AHP) on the flame retardancy of rigid polyurethane foams (RPUFs). A series of flame retardant RPUF containing EG and AHP were prepared by one‐shot and free‐rise method. The flame retardant, thermal degradation, and combustion properties of RPUF hybrids were characterized through limiting oxygen index (LOI) test, vertical burning (UL‐94) test, thermogravimetric analysis and microscale combustion calorimeter. The LOI and UL‐94 results showed that the RPUF sample with 10 wt% EG and 5 wt% AHP passed UL‐94 V‐0 rating and reached a relatively high LOI value of 28.5%, which is superior over other EG/AHP ratios in RPUF at the equivalent filler loading. Microscale combustion calorimeter results revealed that the incorporation of EG and AHP into RPUF reduced the peak heat release rate and total heat release, thus decrease the fire risk of RPUF significantly. Incorporation of EG and AHP improved the thermal stability of RPUF as observed from the thermogravimetric analysis results and also enhanced the thermal resistance of char layer at high temperature from scanning electron microscopy and Raman spectroscopy. Moreover, it could be seen from thermogravimetric analysis/infrared spectrometry spectra that the addition of EG and AHP significantly decreased the combustible gaseous products such as hydrocarbons and ethers. Finally, the synergistic mechanism in flame retardancy was discussed and speculated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
AN S- AND P-CONTAINING FLAME RETARDANT FOR POLYPROPYLENE   总被引:1,自引:0,他引:1  
A novel charring agent,bis(1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane) phenylphosphine sulfide (BCPPS),has been synthesized,and it is combined with ammonium polyphosphate (APP) and melamine phosphate (MP) to impart flame retardance and dripping resistance for polypropylene (PP).The fire performance of the treated PP is investigated by limiting oxygen index (LOI),vertical burning test (UL-94) and cone calorimeter,and the thermal stability and thermal oxidative stability of the compos...  相似文献   

14.
As‐received sepiolite/epoxy systems and Fe3O4‐doped sepiolite/epoxy systems were prepared, and the contents of sepiolite and Fe3O4‐doped sepiolite were kept as 2 and 4 wt%, respectively. Compared with sepiolite, the effect of Fe3O4‐doped sepiolite on the flame retardancy, combustion properties, thermal degradation, thermal degradation kinetics and thermomechanical properties of epoxy resin was investigated systematically by limiting oxygen index (LOI), cone calorimeter (Cone), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). Some interesting results had been acquired. The addition of sepiolite decreased heat release rate, total smoke production and smoke production rate, and obviously improved LOI values of epoxy composites. Compared with sepiolite, the addition of Fe3O4‐doped sepiolite further reduced parameters mentioned above of epoxy composites, and further enhanced LOI values and char residues after cone test. There might be a synergistic effect between sepiolite and Fe3O4 on flame retardant epoxy composite. TGA results indicated that the addition of sepiolite had a slight effect on the thermal degradation of epoxy composites; however, the addition of Fe3O4‐doped sepiolite accelerated the thermal degradation of epoxy composites. DMA results showed that the addition of both sepiolite and Fe3O4‐doped sepiolite increased the glass transition temperature (Tg) of epoxy composite. The results obtained in this paper supplied an effective solution for developing excellent flame retardant properties of polymeric materials. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The synergistic effect of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) immobilized silica (SiO2‐DOPO) nanoparticles with an intumescent flame retardant (IFR) on the flame retardancy of polypropylene (PP) was investigated by UL 94 vertical tests and limiting oxygen index (LOI) measurements. It was found that the PP/IFR composites (25 wt%) achieved the UL94 V0 grade and LOI increased to 32.1 with an incorporation of 1.0 wt% SiO2‐DOPO nanoparticles. Based on thermogravimetric analysis, scanning electronic microscopy and rheological analysis, it is speculated that three factors are mainly contributed to the improvement of the flame retardancy. First, the thermal stability of PP/IFR composites was improved by incorporating SiO2‐DOPO nanoparticles. Second, the presence of SiO2‐DOPO nanoparticles could induce the formation of a continuous char skin layer during combustion. The compact char layer could effectively impede the transport of bubbles and heat. Third, rheological analysis indicated that SiO2‐DOPO nanoparticles could increase viscosity of the PP/IFR composites, which was also benefited to increase flame retardancy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Three different polyhedral oligomeric silsesquioxanes (POSS), trisilanolphenyl polyhedral oligomeric silsesquioxane (T‐POSS), octaaminophenyl polyhedral oligomeric silsesquioxanes (OAPS), and octaphenyl polyhedral oligomeric silsesquioxanes (OPS) were incorporated into phenolic resin (PR), respectively; PR/POSS composites were successfully prepared, and the properties of PR/POSS composites were studied. The limiting oxygen index (LOI), cone calorimeter, and thermal gravimetric analysis (TGA) were used for the estimation of flame retardancy and thermal stability. Oxyacetylene flame test and flexural strength test were used to study the ablative and mechanical properties of the PR/POSS composites. The results indicated that T‐POSS was more effective in improving the flame retardancy of PR than OAPS or OPS. Meanwhile, compared with pure PR, the second line ablation rates of PR/4% T‐POSS, PR/4% OAPS, and PR/4% OPS were significantly reduced by 53.3%, 61.9%, and 40.0%, respectively. In addition, the thermal stability and flexural strength of PR/4% T‐POSS were significantly higher than that of all other PR composites.  相似文献   

17.
A crosslinked silicone‐containing macromolecular charring agent (CSi‐MCA) was synthesized via “one‐pot” process, and it was combined with ammonium polyphosphate (APP) to synergistically improve the flame retardancy of poly(l ‐lactic acid) (PLA). The chemical structure of synthesized CSi‐MCA was characterized by Fourier transform infrared spectroscopy and solid‐state 13C nuclear magnetic resonance. The thermal gravimetric analyzer indicated that the CSi‐MCA displayed good thermal stability and high residue via the catalytic crosslinking. Furthermore, the flame retardant effect of CSi‐MCA and APP as intumescent flame retardants in PLA system was investigated by limited oxygen index, UL94, and cone calorimeter test. When the content of CSi‐MCA was 5 wt% and APP was 10 wt% (CSi‐MCA/APP = 1/2), the limited oxygen index value of composites was 33.6 and UL94 classed a V‐0 rating. The peak heat release rate and total heat release of PLA composites containing both APP and CSi‐MCA decreased significantly in comparison with those with APP or CSi‐MCA alone. The flame retardancy mechanism was investigated via analyzing residual chars by scanning electron microscopy and X‐ray photoelectron spectroscopy as well as the possible chemical reaction between APP and CSi‐MCA by thermal gravimetric analyzer and Fourier transform infrared spectroscopy. The results showed that the enhanced flame retardancy was attributed mainly to synergistic effect of CSi‐MCA and APP, which could form a compact, continuous, and protective layer during combustion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, the composites based on long glass fibre reinforced polypropylene/intumescent flame retardant (LGFPP/IFR) were prepared by melt blending. The influence of thermal oxidative ageing on the LGFPP/IFR composites with different thermal oxidative ageing time at 140 °C was studied by means of oven heating. The thermal stability and flammability of the composites were respectively investigated by thermal gravimetric analysis (TG), limiting oxygen index (LOI), UL-94 test, cone calorimeter test (CCT), scanning electronic microscopy (SEM), mechanical properties test and energy-dispersive X-ray analysis (EDAX). A trend of increase first and then decrease in LOI values was shown in 0–50 days ageing, with the same trend as thermal stability obtained from TG in nitrogen condition. The CCT results indicated that the LGFPP/IFR composites after ageing achieved a higher heat release rate, which means a higher fire risk. The mechanical properties showed a global decrease in just 10 days ageing. Morphologies obtained from SEM showed that both the rupture of PP matrix and fibre interface debonding led to the decrease in mechanical properties. The EDAX proved that IFR particles could emerge and gather on the surface of sample in ageing procedure, which had great effects on the thermal stability and flame retardancy of the composites.  相似文献   

20.
Modified montmorillonite‐containing phytic acid (PA‐MMT) has been prepared by acid treatment and then introduced into unsaturated polyester resin (UPR) with an intumescent flame retardant (IFRs). The flame retardancy and thermal degradation of UPR/IFRs/PA‐MMT were evaluated by a limiting oxygen index (LOI) test, a vertical burning test (UL‐94), a thermogravimetric analysis (TGA), and a cone calorimeter test (CCT). Besides, the mechanical properties were studied by a universal testing machine. The LOI value of UPR/IFRs/PA‐MMT composites was increased to 29.2%. The CCT results indicated that the incorporation of PA‐MMT and IFRs significantly improved the combustion behavior of UPR. The results of the mechanical properties indicated that 1.5 wt% loading of PA‐MMT in UPR/IFRs showed the highest improvement in flexural strength and tensile strength. The flame‐retardant mechanism of PA‐MMT/IFRs was examined and discussed based on the results of combustion behavior and char analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号