首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Microencapsulated ammonium polyphosphate (MCU‐APP) with urea–melamine–formaldehyde (UMF) resin is prepared by in situ polymerization, and is characterized by FTIR and XPS. The microencapsulation of APP with the UMF resin leads to a decrease in the particle's water solubility. The flame retardant actions of MCU‐APP and APP in PP are studied using limiting oxygen index (LOI) and UL‐94 test, and their thermal stability is evaluated by thermogravimetric analysis. It is found that the LOI value of the PP/MCU‐APP composite is higher than the value of the PP/APP composite. In comparison with the PP/MCU‐APP composites, the LOI values of the PP/MCU‐APP/DPER ternary composites at the same additive loading increase, and UL‐94 ratings of most ternary composites are raised to V‐0. The water‐resistant properties of the PP composites containing APP and MCU‐APP are studied. Moreover, the combustion behavior of the PP composites is investigated by the cone calorimeter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The performances of the novel intumescent flame retardant (IFR) polypropylene (PP) composites containing melamine phosphate (MP) and tris(1‐oxo‐2,6,7‐trioxa‐1‐phosphabicyclo[2,2,2]methylene‐4)phosphate (TPMP) were investigated. The flame retardancy of IFR‐PP system was characterized by limiting oxygen index (LOI) and UL 94 and cone calorimeter. The morphology of the char obtained after cone calorimeter testing was studied by scanning electron microscopy (SEM). The thermal oxidative degradation (TOD) of the composites was investigated by using thermogravimetric analysis (TGA) and real‐time Fourier transform infrared spectroscopy (RT‐FTIR). Compared with the PP/ TPMP or PP/ MP binary composite, at the same addition level, the LOI values of the PP/MP/TPMP ternary composites increase and reach V‐0 at the suitable MP/TPMP ratio. The results of TGA and RT‐FTIR showed the existence of the interaction between IFR and PP. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
Microencapsulated ammonium polyphosphate with polyurethane resin (PUMAPP) was prepared by in situ polymerization and characterized by X-ray photoelectron spectroscopy (XPS). The flame retardation of PUMAPP/dipentaerythritol(DPER) and ammonium polyphosphate (APP)/DPER flame retarded polypropylene (PP)/ethylene propylene diene rubber (EPDM) composites were studied using limiting oxygen index (LOI), UL-94 test and cone calorimeter. Results demonstrated that the flame retardancy of the PP/EPDM/PUMAPP/DPER composites was better than that of the PP/EPDM/APP/DPER composites at the same additive loading. Real time Fourier transform infrared (FTIR) and thermogravimetric analysis (TG) were used to study the thermal degradation and stability of the PP/EPDM/PUMAPP/DPER composite. The hydrolytic stability of the flame retarded PP/EPDM composites was studied. It was found that the microencapsulation of APP with the PU resin leaded to a decrease in the particle's water solubility. Moreover, the synergistic effect of vinyltrimethoxysilane (VTMS) on the PP/EPDM/PUMAPP/DPER composite was also investigated.  相似文献   

4.
The flame retardancy and thermal degradation properties of polypropylene (PP) containing intumescent flame retardant additives, i.e. melamine pyrophosphate (MPyP) and charring‐foaming agent (CFA) were characterized by limiting oxygen index (LOI), UL 94, cone calorimeter, microscale combustion calorimetry, and thermogravimetric analysis (TGA). It has been found that the PP material containing only MPyP does not show good flame retardancy even at 30% additive level. Compared with the PP/MPyP binary system, the LOI values of the PP/MPyP/CFA ternary materials at the same additive loading are all increased, and UL 94 rating is raised to V‐0 from no rating (PP/MPyP). The cone calorimeter results show that the heat release rate and mass loss rate of some ternary materials decrease in comparison with the binary material. The microscale combustion calorimetry results indicate that the sample containing 22.5 wt% MPyP and 7.5 wt% CFA has the lowest heat release rate among all samples. The TGA results show that the thermal stability of the materials increases with the addition of MPyP, while decreases with the addition of CFA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
With a shell of starch-melamine-formaldehyde (SMF) resin, core/shell-like ammonium polyphosphate (SMFAPP) is prepared by in situ polymerization, and is characterized by SEM, FTIR and XPS. The shell leads SMFAPP a high water resistance and flame retardance compared with APP in polypropylene (PP). The flame retardant action of SMFAPP and APP in PP are studied using LOI, UL 94 test and cone calorimeter, and their thermal stability is evaluated by TG. The flame retardancy and water resistance of the PP/SMFAPP composite at the same loading is better than that of the PP/APP composite. UL 94 ratings of PP/SMFAPP can reach V-0 at 30 wt% loading. The flame retardant mechanism of SMFAPP was studied by dynamic FTIR, TG and cone calorimeter, etc.  相似文献   

6.
With a shell of PVA–melamine–formaldehyde resin, microencapsulated ammonium polyphosphate (VMFAPP) is prepared by in situ polymerization and characterized by FTIR and XPS. Microencapsulation gives VMFAPP better water resistance and flame retardance compared with APP in PP. Thermal stability and fire resistance behavior have been analyzed and compared. The LOI value of the PP/VMFAPP composite is higher than that of the PP/APP composite. The UL 94 ratings of most of the PP/VMFAPP composites are V‐0, whereas PP/APP gives no rating at the 30% additive level. The water resistant properties of the PP composites are studied. Results of the cone calorimeter experiment show that VMFAPP is an effective flame retardant in PP compared with APP. The thermal degradation behaviors of APP and VMFAPP have been studied using TG and dynamic FTIR. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Mg–Al–Fe ternary layered double hydroxides (LDHs) were synthesized based on Bayer red mud by a calcination–rehydration method, and characterized by X-ray diffraction (XRD) and thermogravimetric analysis (TG). The synergistic effects between melamine and LDHs in ethylene–vinyl acetate (EVA) composites were studied using limiting oxygen index (LOI), UL 94, cone calorimeter test (CCT), smoke density test (SDT), and thermogravimetry–fourier transform infrared spectrometry (TG–IR). Though melamine decreases the LOI values of EVA/LDHs/melamine composites, a suitable amount of melamine can apparently improve UL 94 rating; the composite with 45 % LDHs and 5 % melamine can pass UL 94 test. The CCTs results indicate that heat release rates (HRR) of EVA/LDHs/melamine composites decreased in comparison with that of EVA/LDHs composites. The SDT results show that melamine is helpful to smoke suppression. The TG–IR data show that the ternary composites have a higher thermal stability than that of the binary composites.  相似文献   

8.
In this work, 12‐tungestocobaltic acid based organic–inorganic hybrid material, [Bmim]6CoW12O40 (CoW) was synthesized and applied as a synergist in polypropylene (PP)/intumescent flame retardant (IFR) composites. The flame retardant properties were investigated by the limiting oxygen index (LOI), UL‐94 vertical burning test, thermal gravimetric analyzer (TGA), cone calorimeter and scanning electron microscopy (SEM) etc. The results showed that the PP composites with 16 wt% IFR and 1 wt% CoW achieves the UL‐94 V‐0 rating and gets a LOI value 28.0. However, only add no less than 25 wt% single IFR, can the PP composites obtain the UL‐94 V‐0 rating, which suggests that CoW has good synergistic effects on flame retardancy of PP/IFR composites. In addition, the SEM and cone calorimeter tests indicated the CoW improves the quality of char layer. The rate of char formation has been enhanced also because of the existence of CoW. It is the combination of a better char quality and a high rate of char formation promoted by CoW that results in the excellent flame retardancy of PP/IFR composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The functions of nanoclay and three different boron containing substances, zinc borate (ZnB), borophosphate (BPO4), and boron silicon containing preceramic oligomer (BSi), were studied to improve the flame retardancy of polypropylene (PP)‐nanoclay‐intumescent system composed of ammonium polyphosphate (APP) and pentaerythritol (PER). The flame retardancy of PP composites was investigated using limiting oxygen index (LOI), UL‐94 standard, thermogravimetric analysis (TGA), and cone calorimeter. According to the results obtained, the addition of 20 wt% intumescent flame retardant (IFR) improved the flame retardancy by increasing the char formation. Addition of clay slightly increases the LOI value and reduces the maximum heat release rate (HRR). Addition of clay also increases the barrier effect due to intumescent char, especially in thin samples. Boron compounds show their highest synergistic effect at about 3 wt% loading. According to UL‐94 test and LOI test, 3 wt% ZnB containing composite shows the highest rating (V0) and BPO4 containing sample shows the highest LOI value (26.5). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The ferrocene‐based polymer (PDPFDE) accompanied with traditional intumescent flame retardant (IFR) system (ammonium polyphosphate (APP)/pentaerythritol (PER) = 3/1, mass ratio) has been used as additive flame retardant in polypropylene (PP), aiming to lower the total loading amount. The thermal stability and fire retardant properties were investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical combustion (UL‐94), and cone calorimetry (CONE). The fire retardant mechanism was studied by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The results showed that the PP1 with 25 wt% IFR only passed the UL‐94 V‐1 rating, but the PP6 loaded by 0.5 wt% PDPFDE and 22.5 wt% IFR possessed an LOI value of 28.5% and passed the UL‐94 V‐0 rating; the peak heat release rate (pHRR) and total heat release (THR) are decreased by 63% and 43%, respectively, compared with pure PP. In addition, the char residue of PP6 manifested a very compact and smooth surface, indicating a more effective barrier layer. Meanwhile, it was interesting that the addition of PDPFDE evidently improved the impact strength and elongation at break of PP/IFR composites.  相似文献   

11.
The flame retardancy mechanisms of poly(1,4‐butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermogravimetric analysis (TGA), real‐time Fourier transform infrared (FTIR), TG‐IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL‐94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V‐2 classification in UL‐94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char‐forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen‐free PBT composites with V‐0 classification according to UL‐94 test were obtained; their LOI were 32 and 33%, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
将改性后的海泡石添加到聚磷酸铵(APP)和双季戊四醇(DPER)膨胀阻燃聚丙烯(PP/IFR)体系中,采用氧指数(LOI)、热重分析(TGA)、光电子能谱(XPS)、傅里叶变换红外(FTIR)光谱、锥形量热仪(CONE)和扫描电镜(SEM)考察其对膨胀阻燃体系的催化协效作用,探讨作用机理.LOI结果表明,改性的海泡石比纳米水滑石和有机改性的蒙脱土有更好的催化协效作用.CONE数据证实,海泡石可以降低膨胀阻燃聚丙烯体系的热释放速率和总的热释放量.通过观察SEM图片发现,海泡石可以改善膨胀炭层的形貌,提高炭层的隔热隔质性能.TGA结果表明,在氮气和空气气氛下,海泡石均可以提高膨胀炭层的热稳定性,增加高温时残余物的量,其主要作用对象为APP.FTIR和XPS测试发现加热过程中海泡石可以与APP发生化学反应,形成P—O—Si键,增加了APP高温时的稳定性.  相似文献   

13.
A series of UV‐curable flame retardant resins was obtained using epoxy acrylate (EA) modified with 1‐oxo‐4‐hydroxymethyl‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane (PEPA). The flammability was characterized by limiting the oxygen index (LOI), UL 94 and cone calorimeter, and the thermal degradation of the flame retardant resins was studied using thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). The results indicated that the flame retardant efficiency increases and the heat release rate (HRR) decreases greatly with the content of PEPA. The TG data showed that the modified epoxy acrylates (MEAs) have lower initial decomposition temperatures and higher char residues than pure EA. The RTFTIR study indicates that the MEAs have lower thermal oxidative stability than the pure EA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study deals with the silane crosslinking and intumescent flame retardation of polypropylene/ethylene‐propylene‐diene copolymer (PP/EPDM) elastomers. The effect of silane crosslinking on the flame retardancy of the PP/EPDM composites containing melamine phosphate (MP) and dipentaerythritol (DPER) was studied by limiting oxygen index, UL 94 and cone calorimetry tests. The chemical composition of the silane crosslinked and flame retarded PP/EPDM composites treated at different temperatures was studied by X‐ray photoelectron spectroscopy and real time Fourier transform infrared (FTIR) spectrometry. Thermal decomposition and crystallization behavior of the PP/EPDM composites were investigated using thermogravimetric analysis and differential scanning calorimetry, respectively. Moreover, the mechanical properties of the composites were also studied. It is found that the flame retardancy, mechanical properties, and thermal decomposition behavior of the composites are influenced by silane grafting and crosslinking. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
An intumescent flame retardant system composed of ammonium polyphosphate (APP) and pentaerythritol (PER) was used for flame retarding ethylene–propylene–diene‐modified elastomer (EPDM)/polypropylene (PP) blends. Cerium phosphate (CeP) was synthesized and the effect on flame retardancy and thermal stability of EPDM/PP composites based on intumescent flame retardant (IFR) were studied by limiting oxygen index (LOI), UL‐94, and thermogravimetic analysis (TGA), respectively. Scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR) were used to analyze the morphological structure and the component of the residue chars formed from the EPDM/PP composites, and the mechanical properties of the materials were also studied. The addition of CeP to the EPDM/PP/APP/PER composites gives better flame retardancy than that of EPDM/PP/APP/PER composites. TGA and RT‐FTIR studies indicated that an interaction occurs among APP, PER, and EPDM/PP. The incorporation of CeP improved the mechanical properties of the materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The objective of the study was to investigate the effect of the organo‐modified nanosepiolite (ONSep) on improving the fire safety of polypropylene (PP). The composites based on PP, flame retardant master batch (MB‐FR, 25 wt% PP+50 wt% decabromodiphenyl ether (DBDPE)+25% antimony trioxide (ATO)) and ONSep were prepared via melt blending. The results of the limiting oxygen index (LOI) and vertical burning rating (UL‐94) test indicated that PP/40 wt% MB composites had no rating with seriously dripping phenomenon, while the LOI value was only 22.5. However, as 4 wt% ONSep was added in PP/40 wt% MB composites, the composites achieved UL94 V‐0 rating and the LOI value was 24.3. In comparison, PP/50 wt% MB composites could not reach the V‐0 rating either. The TGA results revealed that the addition of ONSep enhanced the thermal stability of the PP/MB‐FR composites. The cone calorimeter results indicated that the heat release rate, average mass loss rate, smoke production rate and smoke temperature of the PP/40 wt% MB‐FR/4 wt% ONSep composites decreased in comparison with those of PP/40 wt% MB‐FR composites. Simultaneously, the Young modulus and impact strength were also much better improved with the increase of ONSep loading. Therefore, the synergistic flame retardancy of ONSep in PP/MB‐FR matrix significantly containing a halogen based flame retardant (DBDPE) significantly improved the fire safety and mechanical properties of the composites, and allowed to decrease the total amount of brominated fire retardants.  相似文献   

17.
Microencapsulated ammonium polyphosphate (MAPP) is prepared using hydroxyl silicone oil by in situ polymerization and characterized by XPS. Microencapsulation gives MAPP better water resistance and flame retardance compared with APP in thermoplastic polyurethane (TPU). Thermal stability and fire resistance behavior have been analyzed and compared. The LOI value of the TPU/MAPP composite is higher than that of the TPU/APP composite. The UL 94 rating of the TPU/MAPP composite is V-0 at the 20 wt% additive level, whereas TPU/APP gives V-2 rating at the same loading level. The water resistant properties of the TPU composites are studied. Results of the cone calorimeter and microscale combustion calorimeter experiment show that MAPP is an effective flame retardant in TPU compared with APP.  相似文献   

18.
A novel ionic liquid containing phosphorus ([PCMIM]Cl) was synthesized and characterized by FTIR, 1H NMR, 13C NMR and 31P NMR. Moreover, a new intumescent flame retardant (IFR) system, which was composed of [PCMIM]Cl and ammonium polyphosphate (APP), was used to impart flame retardancy and dripping resistance to polypropylene (PP). The flammability and thermal behaviors of intumescent flame‐retarded PP (PP/IFR) composites were evaluated by limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA) and cone calorimeter test. It was found that there was an obvious synergistic effect between [PCMIM]Cl and APP. When the weight ratio of [PCMIM]Cl and APP was 1:5 and the total amount of IFR was kept at 30 wt%, LOI value of PP/IFR composite reached 31.8, and V‐0 rating was obtained. Moreover, both the peak heat release rate and the peak mass loss rate of PP/IFR composites decreased significantly relative to PP and PP/APP composite from cone calorimeter analysis. The TGA curves suggested that [PCMIM]Cl had good ability of char formation, and when combined with APP, it could greatly promote the char formation of PP/IFR composites, hence improved the flame retardancy. Additionally, the rheological behaviors and mechanical properties of PP/IFR composites were also investigated, and it was found that [PCMIM]Cl could also serve as an efficient lubricant and compatibilizer between APP and PP, endowing the materials with satisfying processability and mechanical properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The two kinds of transition metal ion-incorporated nickel phosphates (TMIVSB-1) were synthesized by the hydrothermal method. The flame retardancy and thermal behavior of intumescent flame retardants (IFR), with and without TMIVSB-1 for PP, were investigated by LOI, UL-94 test, thermogravimetric analyses (TGA) and cone calorimetry. TMIVSB-1 can obviously improve the flame retardant behavior of IFR systems according to the results of LOI values and UL-94 test. The results of LOI show that 2 wt% TMIVSB-1 can increase the LOI value by 3–5 unit compared with that of PP/IFR composite. The UL-94 test shows that PP with 20% IFR burns and has no rating, but the addition of a small content 2 wt% of TMIVSB-1 with 18 wt% of IFR can reach a UL-94 V-0 rating. TGA results show that the thermal stability of PP/IFR/TMIVSB-1 increases obviously more than that of PP/IFR when the temperature is above 265°C. From cone calorimetry results, it can be observed that the HRR peaks are not obviously decreased, but the burning time of PP/IFR/FeVSB-1 (351s) and PP/IFR/ZnVSB-1 (380s) is obviously prolonged compared with that of PP/IFR (303s). The real time FTIR spectra (RTFTIR) demonstrates that the addition of TMIVSB-1 further staves the decomposition of the PP composites. The scanning electron microscopy (SEM) indicates the quality of char forming of PP/IFR/ TMIVSB-1 is superior to that of PP/IFR.  相似文献   

20.
Poly(vinyl alcohol)/melamine phosphate composites (PVA/MP) as a novel halogen‐free, flame‐retardant foam matrix were prepared through thermal processing, and then their thermal stability and flame retardancy were investigated by thermo‐gravimetric analysis, micro‐scale combustion calorimeter, cone calorimeter, vertical burning test, and limiting oxygen index (LOI) test. It was found that the thermal stability and combustion properties of the PVA/MP composites could be influenced by the addition of MP. Compared with the control PVA sample (B‐PVA), in the PVA/MP (75/25) composites, the temperature at 5% mass loss (T5%) decreased about 10°C, the residual chars at 600°C increased by nearly 27%, the temperature at the maximum peak heat release rate (TP) shifted from 292°C to 452°C, and the total heat released and the heat release capacity (HRC) decreased by 28% and 14%, respectively. Moreover, the PVA/MP composites could reach LOI value up to 35% and UL94 classification V‐0, showing good flame retardancy. At the same time, both Fourier transform infrared and X‐ray photoelectron spectroscopy spectra of the residual chars from the PVA/MP composites demonstrated that the catalytic effect of MP on the dehydration and decarboxylation reactions of PVA, and the chemical reactivity of MP during the chars‐forming reactions could be used to account for the changed thermal stability and flame retardancy of the PVA/MP composites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号