首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In a previous paper, the authors presented a dual space methodfor the numerical solution of the two-dimensional inverse scatteringproblem for acoustic waves in an inhomogeneous medium. Here,by making major modifications to the dual space method, a dramaticimprovement in the numerical performance of this method is achievedfor solving the inverse scattering problem.  相似文献   

2.
The present work is motivated by the desire to obtain numerical solution to a quasilinear parabolic inverse problem. The solution is presented by means of the method of lines. Method of lines is an alternative computational approach which involves making an approximation to the space derivatives and reducing the problem to a system of ordinary differential equations in the variable time, then a proper initial value problem solver can be used to solve this ordinary differential equations system. Some numerical examples and also comparison with finite difference methods will be investigated to confirm the efficiency of this procedure.  相似文献   

3.
This paper has focused on unknown functions identification in nonlinear boundary conditions of an inverse problem of a time‐fractional reaction–diffusion–convection equation. This inverse problem is generally ill‐posed in the sense of stability, that is, the solution of problem does not depend continuously on the input data. Thus, a combination of the mollification regularization method with Gauss kernel and a finite difference marching scheme will be introduced to solve this problem. The generalized cross‐validation choice rule is applied to find a suitable regularization parameter. The stability and convergence of the numerical method are investigated. Finally, two numerical examples are provided to test the effectiveness and validity of the proposed approach.  相似文献   

4.
The Dirichlet problem for Laplace’s equation in a two-dimensional domain filled with a piecewise homogeneous medium is considered. The boundary of the inhomogeneity is assumed to be unknown. The inverse problem of determining the inhomogeneity boundary from additional information on the solution of the Dirichlet problem is considered. A numerical method based on the linearization of the nonlinear operator equation for the unknown boundary is proposed for solving the inverse problem. The results of numerical experiments are presented.  相似文献   

5.
In this paper, we investigate a backward problem for a space‐fractional partial differential equation. The main purpose is to propose a modified regularization method for the inverse problem. The existence and the uniqueness for the modified regularized solution are proved. To derive the gradient of the optimization functional, the variational adjoint method is introduced, and hence, the unknown initial value is reconstructed. Finally, numerical examples are provided to show the effectiveness of the proposed algorithm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
本文只用一个纵波信息,对一维波动方程的速度和震源函数进行联合反演.并考虑到波动方程的反问题是一不适定问题,对震源函数和波速分别用正则化法分步迭代求解,大大减少了反问题的计算工作量,改善了该反问题的计算稳定性.为计算实际一维地震数据提供了一种方法.文中给出了只用一个反问题补充条件同时进行多参数反演的详细公式,并对相应的数值算例进行了分析和比较.  相似文献   

7.
In this paper, we consider an inverse problem related to a fractional diffusion equation. The model problem is governed by a nonlinear partial differential equation involving the fractional spectral Laplacian. This study is focused on the reconstruction of an unknown source term from a partial internal measured data. The considered ill‐posed inverse problem is formulated as a minimization one. The existence, uniqueness, and stability of the solution are discussed. Some theoretical results are established. The numerical reconstruction of the unknown source term is investigated using an iterative process. The proposed method involves a denoising procedure at each iteration step and provides a sequence of source term approximations converging in norm to the actual solution of the minimization problem. Some numerical results are presented to show the efficiency and the accuracy of the proposed approach.  相似文献   

8.
We find the conditions for the unique solvability of the inverse problem for a time‐fractional diffusion equation with Schwarz‐type distributions in the right‐hand sides. This problem is to find a generalized solution of the Cauchy problem and an unknown space‐dependent part of an equation's right‐hand side under a time‐integral overdetermination condition.  相似文献   

9.
This paper is devoted to discuss a multidimensional backward heat conduction problem for time‐fractional diffusion equation with inhomogeneous source. This problem is ill‐posed. We use quasi‐reversibility regularization method to solve this inverse problem. Moreover, the convergence estimates between regularization solution and the exact solution are obtained under the a priori and the a posteriori choice rules. Finally, the numerical examples for one‐dimensional and two‐dimensional cases are presented to show that our method is feasible and effective.  相似文献   

10.
The reconstruction of an unknown solely time‐dependent Dirichlet boundary condition in a nonlinear parabolic problem containing a linear and a nonlinear Volterra operator is considered. The inverse problem is converted into a variational problem in which the unknown Dirichlet condition is eliminated using a given integral overdetermination. A time‐discrete recurrent approximation scheme is designed, using Backward Euler's method. The convergence of the approximations towards a solution of the variational problem is proved under appropriate assumptions on the data and on the Volterra operators. The uniqueness of this solution is shown in the case that the nonlinear Volterra operator satisfies a particular inequality. Moreover, the Finite Element Method is used to discretize the time‐discrete approximation scheme in space. Finally, full‐discrete error estimates are derived for a particular choice of the finite elements. The corresponding convergence rates are supported by a numerical experiment. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1444–1460, 2015  相似文献   

11.
研究了用声传播远场分布信息来成像海洋波导环境中三维可穿透目标的反问题.建立了求解这类反问题的远场方程,基于内透射边界值问题的分析,讨论了远场方程解的唯一性和可解性,证明了总能找到远场方程的一个在最小平方意义下的近似解,其模在可穿透目标内部的取值是小的,而在外部的取值是大的,进而发展了一种快速成像可穿透目标的一种指示器样本方法.数值试验表明了这种方法是有效的,即使在有限孔径测量方式的情况,也能够得到未知目标的一个理想成像,而且不需要先验知道可穿透目标的任何几何与物理信息.  相似文献   

12.
In this discussion, a new numerical algorithm focused on the Haar wavelet is used to solve linear and nonlinear inverse problems with unknown heat source. The heat source is dependent on time and space variables. These types of inverse problems are ill-posed and are challenging to solve accurately. The linearization technique converted the nonlinear problem into simple nonhomogeneous partial differential equation. In this Haar wavelet collocation method (HWCM), the time part is discretized by using finite difference approximation, and space variables are handled by Haar series approximation. The main contribution of the proposed method is transforming this ill-posed problem into well-conditioned algebraic equation with the help of Haar functions, and hence, there is no need to implement any sort of regularization technique. The results of numerical method are efficient and stable for this ill-posed problems containing different noisy levels. We have utilized the proposed method on several numerical examples and have valuable efficiency and accuracy.  相似文献   

13.
In this paper we consider the inverse minimum flow (ImF) problem, where lower and upper bounds for the flow must be changed as little as possible so that a given feasible flow becomes a minimum flow. A linear time and space method to decide if the problem has solution is presented. Strongly and weakly polynomial algorithms for solving the ImF problem are proposed. Some particular cases are studied and a numerical example is given.  相似文献   

14.
We consider numerical methods for solving inverse problems that arise in heart electrophysiology. The first inverse problem is the Cauchy problem for the Laplace equation. Its solution algorithm is based on the Tikhonov regularization method and the method of boundary integral equations. The second inverse problem is the problem of finding the discontinuity surface of the coefficient of conductivity of a medium on the basis of the potential and its normal derivative given on the exterior surface. For its numerical solution, we suggest a method based on the method of boundary integral equations and the assumption on a special representation of the unknown surface.  相似文献   

15.
For a multidimensional parabolic equation, we study the problem of finding the leading coefficient, which is assumed to depend only on time, on the basis of additional information about the solution at an interior point of the computational domain. For the approximate solution of the nonlinear inverse problem, we construct linearized approximations in time with the use of ordinary finite-element approximations with respect to space. The numerical algorithm is based on a special decomposition of the approximate solution for which the transition to the next time level is carried out by solving two standard elliptic problems. The capabilities of the suggested numerical algorithm are illustrated by the results of numerical solution of a model inverse two-dimensional problem.  相似文献   

16.
A. Scascighini  A. Troxler 《PAMM》2002,1(1):274-275
The inverse shape design problem consists in finding the shape of a flow device by prescribing a pressure distribution along its (unknown) walls. In this paper we show how the inverse Euler equations can be used to solve the inverse shape design problem for an axis‐symmetric diffuser. The inverse Euler equations for axis‐symmetric flows are presented and a numerical method briefly described. A numerical example shows the feasibility of the method.  相似文献   

17.
A conjugate gradient method (CGM), (or called an iterative regularization method), based inverse algorithm is applied in this study in determining the unknown space and time-dependent contaminant source for groundwater systems based on the measurements of the concentrations. It is assumed that no prior information is available on the functional form of the unknown contaminant release function in the present study; thus, it is classified as the function estimation in the inverse calculations. The accuracy of this inverse mass transfer problem is examined by using the simulated exact and inexact concentration measurements in the numerical experiments. Results show that the estimation on the space and time-dependent contaminant release function can be obtained with any arbitrary initial guesses on a Pentium IV 1.4 GHz personal computer.  相似文献   

18.
In this paper, an inverse boundary value problem for a two-dimensional hyperbolic equation with overdetermination conditions is studied. To investigate the solvability of the original problem, we first consider an auxiliary inverse boundary value problem and prove its equivalence to the original problem in a certain sense. We then use the Fourier method to reduce such an equivalent problem to a system of integral equations. Furthermore, we prove the existence and uniqueness theorem for the auxiliary problem by the contraction mappings principle. Based on the equivalency of these problems, the existence and uniqueness theorem for the classical solution of the original inverse problem is proved. Some discussions on the numerical solutions for this inverse problem are presented including some numerical examples.  相似文献   

19.
This article considers the acoustic unknown object problem for a shallow ocean with a sloping seabed. The incident waves are sent from point sources along a s raight line parallel to the sea surface, and the corresponding scattered fields are measured from a line above the unknown object. We prove a uniqueness theorem for the inverse problem,and describe a generalizeddual space indicator method for numerical solution.Numerical results are given in Section 4.  相似文献   

20.
This study deals with the numerical investigation of a mathematical model of breast cancer at the initial growth stage known as ductal carcinoma in situ. This model considered as an inverse problem and the uniqueness of solution of this inverse problem is proved. To solve this problem, a computational approach is developed based on an iterative procedure and space marching and mollification methods. The stability and convergence results are given to support the method theoretically. Two test problems are considered to demonstrate the efficiency and ability of the proposed numerical approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号