首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper, we study an inverse problem of identifying a time-dependent term of an unknown source for a time fractional diffusion equation using nonlocal measurement data. Firstly, we establish the conditional stability for this inverse problem. Then two regularization methods are proposed to for reconstructing the time-dependent source term from noisy measurements. The first method is an integral equation method which formulates the inverse source problem into an integral equation of the second kind; and a prior convergence rate of regularized solutions is derived with a suitable choice strategy of regularization parameters. The second method is a standard Tikhonov regularization method and formulates the inverse source problem as a minimizing problem of the Tikhonov functional. Based on the superposition principle and the technique of finite-element interpolation, a numerical scheme is proposed to implement the second regularization method. One- and two-dimensional examples are carried out to verify efficiency and stability of the second regularization method.  相似文献   

2.
This paper is devoted to discuss a multidimensional backward heat conduction problem for time‐fractional diffusion equation with inhomogeneous source. This problem is ill‐posed. We use quasi‐reversibility regularization method to solve this inverse problem. Moreover, the convergence estimates between regularization solution and the exact solution are obtained under the a priori and the a posteriori choice rules. Finally, the numerical examples for one‐dimensional and two‐dimensional cases are presented to show that our method is feasible and effective.  相似文献   

3.
In this paper, we are concerned with the backward problem of reconstructing the initial condition of a time‐fractional diffusion equation from interior measurements. We establish uniqueness results and provide stability analysis. Our method is based on the eigenfunction expansion of the forward solution and the Tikhonov regularization to tackle the ill‐posedness issue of the underlying inverse problem. Some numerical examples are included to illustrate the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we consider an inverse source problem for a time fractional diffusion equation. In general, this problem is ill posed, therefore we shall construct a regularized solution using the filter regularization method in the random noise case. We will provide appropriate conditions to guarantee the convergence of the approximate solution to the exact solution. Then, we provide examples of filters in order to obtain error estimates for their approximate solutions. Finally, we present a numerical example to show efficiency of the method.  相似文献   

5.
In this paper, we consider an inverse problem of determining an unknown source for the Poisson equation. Since this problem is mildly ill-posed, we apply a central difference regularization method to solve this problem. Furthermore, the convergence estimate is established under a priori choice of the regularization parameter. Some numerical results verify that the proposed method is stable and effective.  相似文献   

6.
In this article, we study an inverse problem with inhomogeneous source to determine an initial data from the time fractional diffusion equation. In general, this problem is ill-posed in the sense of Hadamard, so the quasi-boundary value method is proposed to solve the problem. In the theoretical results, we propose a priori and a posteriori parameter choice rules and analyze them. Finally, two numerical results in the one-dimensional and two-dimensional case show the evidence of the used regularization method.  相似文献   

7.
In this paper, we investigate a backward problem for a space‐fractional partial differential equation. The main purpose is to propose a modified regularization method for the inverse problem. The existence and the uniqueness for the modified regularized solution are proved. To derive the gradient of the optimization functional, the variational adjoint method is introduced, and hence, the unknown initial value is reconstructed. Finally, numerical examples are provided to show the effectiveness of the proposed algorithm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The inverse problem of determining an unknown source term depending on space variable in a parabolic equation is considered. A numerical algorithm is presented for recovering the unknown function and obtaining a solution of the problem. As this inverse problem is ill‐posed, Tikhonov regularization is used for finding a stable solution. For solving the direct problem, a Galerkin method with the Sinc basis functions in both the space and time domains is presented. This approximate solution displays an exponential convergence rate and is valid on the infinite time interval. Finally, some examples are presented to illustrate the ability and efficiency of this numerical method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

9.
This paper has focused on unknown functions identification in nonlinear boundary conditions of an inverse problem of a time‐fractional reaction–diffusion–convection equation. This inverse problem is generally ill‐posed in the sense of stability, that is, the solution of problem does not depend continuously on the input data. Thus, a combination of the mollification regularization method with Gauss kernel and a finite difference marching scheme will be introduced to solve this problem. The generalized cross‐validation choice rule is applied to find a suitable regularization parameter. The stability and convergence of the numerical method are investigated. Finally, two numerical examples are provided to test the effectiveness and validity of the proposed approach.  相似文献   

10.
张莉  吴建成  徐耀群 《计算数学》2004,26(3):329-336
We concern the inverse problem of determination of unknown source term for one-dimensional hyperbolic half-linear equation. Approach form for inverse problem is given by using correlative problem of assistant. We concern more ordinary problem than this paper, which is turned into integral equation with the method of characteristic line. We prove the existence and uniqueness of part solution for inverse problem, and unknown source can be solved bv successive approximation.  相似文献   

11.
We consider the inverse source problem for a time fractional diffusion equation. The unknown source term is independent of the time variable, and the problem is considered in two dimensions. A biorthogonal system of functions consisting of two Riesz bases of the space L2[(0,1) × (0,1)], obtained from eigenfunctions and associated functions of the spectral problem and its adjoint problem, is used to represent the solution of the inverse problem. Using the properties of the biorthogonal system of functions, we show the existence and uniqueness of the solution of the inverse problem and its continuous dependence on the data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time. A novel regularization method, which we call the exponential Tikhonov regularization method with a parameter $\gamma$, is proposed to solve the inverse source problem, and the corresponding convergence analysis is given under a-priori and a-posteriori regularization parameter choice rules. When $\gamma$ is less than or equal to zero, the optimal convergence rate can be achieved and it is independent of the value of $\gamma$. However, when $\gamma$ is greater than zero, the optimal convergence rate depends on the value of $\gamma$ which is related to the regularity of the unknown source. Finally, numerical experiments are conducted for showing the effectiveness of the proposed exponential regularization method.  相似文献   

13.
This paper deals with discontinuous dual reciprocity boundary element method for solving an inverse source problem.The aim of this work is to determine the source term in elliptic equations for nonhomogenous anisotropic media,where some additional boundary measurements are required.An equivalent formulation to the primary inverse problem is established based on the minimization of a functional cost,where a regularization term is employed to eliminate the oscillations of the noisy data.Moreover,an efficient algorithm is presented and tested for some numerical examples.  相似文献   

14.
In this paper, we consider the inverse problem for identifying the source term and initial value simultaneously in a space-fractional Allen-Cahn equation. This problem is ill-posed, i.e., the solution of this problem does not depend continuously on the data. The fractional Tikhonov method is used to solve this problem. Under the a priori and the a posteriori regularization parameter choice rules, the error estimates between the regularization solutions and the exact solutions are obtained, respectively. Different numerical examples are presented to illustrate the validity and effectiveness of our method.  相似文献   

15.
16.
胡行华  秦艳杰 《计算数学》2023,45(1):109-129
本文基于现有的切比雪夫神经网络,提出了一种利用遗传算法优化切比雪夫神经网络求解分数阶Bagley-Torvik方程数值解的新方法,结合多点处的泰勒公式原理,给出数值解的一般形式,将原问题转化为求解无约束最小化问题.与现有数值方法的数值结果进行比较表明了本文方法的可行性和有效性,为分数阶微分方程中类似问题的求解提供了新的思路.  相似文献   

17.
This paper deals with an inverse potential problem posed in two dimensional space whose forward problem is governed by a modified Helmholtz equation. The inverse problem consists in the reconstruction of a set of anomalies embedded into a geometrical domain from partial measurements of the associated potential. Since the inverse problem, we are dealing with, is written in the form of an ill-posed boundary value problem, the idea is to rewrite it as a topology optimization problem. In particular, a shape functional is defined to measure the misfit of the solution obtained from the model and the data taken from the partial measurements. This shape functional is minimized with respect to a set of ball-shaped anomalies using the concept of topological derivatives. It means that the shape functional is expanded asymptotically and then truncated up to the desired order term. The resulting expression is trivially minimized with respect to the parameters under consideration which leads to a noniterative second-order reconstruction algorithm. As a result, the reconstruction process becomes very robust with respect to noisy data and independent of any initial guess. Finally, some numerical experiments are presented to show the effectiveness of the proposed reconstruction algorithm.  相似文献   

18.
The inverse problem of determining a spacewise dependent heat source, together with the initial temperature for the parabolic heat equation, using the usual conditions of the direct problem and information from two supplementary temperature measurements at different instants of time is studied. These spacewise dependent temperature measurements ensure that this inverse problem has a unique solution, despite the solution being unstable, hence the problem is ill-posed. We propose an iterative algorithm for the stable reconstruction of both the initial data and the source based on a sequence of well-posed direct problems for the parabolic heat equation, which are solved at each iteration step using the boundary element method. The instability is overcome by stopping the iterations at the first iteration for which the discrepancy principle is satisfied. Numerical results are presented for a typical benchmark test example, which has the input measured data perturbed by increasing amounts of random noise. The numerical results show that the proposed procedure gives accurate numerical approximations in relatively few iterations.  相似文献   

19.
An inverse problem of reconstructing the initial condition for a time fractional diffusion equation is investigated. On the basis of the optimal control framework, the uniqueness and first order necessary optimality condition of the minimizer for the objective functional are established, and a time-space spectral method is proposed to numerically solve the resulting minimization problem. The contribution of the paper is threefold: 1) a priori error estimate for the spectral approximation is derived; 2) a conjugate gradient optimization algorithm is designed to efficiently solve the inverse problem; 3) some numerical experiments are carried out to show that the proposed method is capable to find out the optimal initial condition, and that the convergence rate of the method is exponential if the optimal initial condition is smooth.  相似文献   

20.
In this work, we present a numerical method based on a splitting algorithm to find the solution of an inverse source problem with the integral condition. The source term is reconstructed by using the specified data and by employing the Lie splitting method, we decompose the equation into linear and nonlinear parts. Each subproblem is solved by the Fourier transform and then by combining the solutions of subproblems, the solution of the original problem is computed. Moreover, the framework of strongly continuous semigroup (or C0-semigroup) is employed in error analysis of operator splitting method for the inverse problem. The convergence of the proposed method is also investigated and proved. Finally, some numerical examples in one, two, and three-dimensional spaces are provided to confirm the efficiency and capability of our work compared with some other well-known methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号