首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a conservative compact difference scheme is presented for the periodic initial‐value problem of Klein–Gordon–Schrödinger equation. On the basis of some inequalities about norms and the priori estimates, convergence of the difference solution is proved with order O(h42) in maximum norm. Numerical experiments demonstrate the accuracy and efficiency of the compact scheme. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

2.
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

3.
The coupled nonlinear Schrödinger–Boussinesq (SBq) equations describe the nonlinear development of modulational instabilities associated with Langmuir field amplitude coupled to intense electromagnetic wave in dispersive media such as plasmas. In this paper, we present a conservative compact difference scheme for the coupled SBq equations and analyze the conservative property and the existence of the scheme. Then we prove that the scheme is convergent with convergence order O(τ2 + h4) in L‐norm and is stable in L‐norm. Numerical results verify the theoretical analysis.  相似文献   

4.
In a rectangular domain we construct a grid scheme by applying the operators of exact difference schemes. We study an estimate of the rate of convergence of the grid scheme in the grid norm L2(). It is shown that in the case when the solution of the differential problem belongs to the space W 2 k (), k (3/2,2] the order of precision of the proposed scheme is O(hk–3/2), and in the linear case it is O(hk).Translated fromVychislitel'naya i Prikladnaya Matematika, Issue 71, 1990, pp. 3–14.  相似文献   

5.
In this article, we consider the finite volume element method for the monotone nonlinear second‐order elliptic boundary value problems. With the assumptions which guarantee that the corresponding operator is strongly monotone and Lipschitz‐continuous, and with the minimal regularity assumption on the exact solution, that is, uH1(Ω), we show that the finite volume element method has a unique solution, and the finite volume element approximation is uniformly convergent with respect to the H1 ‐norm. If uH1+ε(Ω),0 < ε ≤ 1, we develop the optimal convergence rate \begin{align*}\mathcal{O}(h^{\epsilon})\end{align*} in the H1 ‐norm. Moreover, we propose a natural and computationally easy residual‐based H1 ‐norm a posteriori error estimator and establish the global upper bound and local lower bounds on the error. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

6.
In this article, a Crank–Nicolson linear finite volume element scheme is developed to solve a hyperbolic optimal control problem. We use the variational discretization technique for the approximation of the control variable. The optimal convergent order O(h2 + k2) is proved for the numerical solution of the control, state and adjoint‐state in a discrete L2‐norm. To derive this result, we also get the error estimate (convergent order O(h2 + k2)) of Crank–Nicolson finite volume element approximation for the second‐order hyperbolic initial boundary value problem. Numerical experiments are presented to verify the theoretical results.© 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1331–1356, 2016  相似文献   

7.
In this article, we shall discuss local superconvergence of the derivative for tensor‐product block finite elements over uniform partition for three‐dimensional Poisson's equation on the basis of Liu and Zhu (Numer Methods Partial Differential Eq 25 (2009) 999–1008). Assume that odd m ≥ 3, x0 is an inner locally symmetric point of uniform rectangular partition \begin{align*}\mathcal{T}_{h}\end{align*} and ρ(x0,?Ω) means the distance between x0 and boundary ?Ω. Combining the symmetry technique (Wahlbin, Springer, 1995; Schatz, Sloan, and Wahlbin, SIAM J Numer Anal 33 (1996), 505–521; Schatz, Math Comput 67 (1998), 877–899) with weak estimates for tensor‐product block finite elements of degree m ≥ 3 [see Liu and Zhu, Numer Methods Partial Differential Eq 25 (2009) 999–1008] and the finite element theory of Green function in ??3 presented in this article, we propose the \begin{align*}O(h^{m+3}|\ln h|^{\frac{4}{3}}+h^{2m+2}|\ln h|^{\frac{4}{3}}\rho(x_{0},\partial\Omega)^{-m})\end{align*} convergence of the derivatives for tensor‐product block finite elements of degree m ≥ 3 on x0. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 457–475, 2012  相似文献   

8.
Recent research has shown that in some practically relevant situations like multiphysics flows (Galvin et al., Comput Methods Appl Mech Eng, to appear) divergence‐free mixed finite elements may have a significantly smaller discretization error than standard nondivergence‐free mixed finite elements. To judge the overall performance of divergence‐free mixed finite elements, we investigate linear solvers for the saddle point linear systems arising in ((Pk)d,P k‐1disc) Scott‐Vogelius finite element implementations of the incompressible Navier–Stokes equations. We investigate both direct and iterative solver methods. Due to discontinuous pressure elements in the case of Scott‐Vogelius (SV) elements, considerably more solver strategies seem to deliver promising results than in the case of standard mixed finite elements such as Taylor‐Hood elements. For direct methods, we extend recent preliminary work using sparse banded solvers on the penalty method formulation to finer meshes and discuss extensions. For iterative methods, we test augmented Lagrangian and \begin{align*}\mathcal{H}\end{align*} ‐LU preconditioners with GMRES, on both full and statically condensed systems. Several numerical experiments are provided that show these classes of solvers are well suited for use with SV elements and could deliver an interesting overall performance in several applications.© 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

9.
This is the further work on compact finite difference schemes for heat equation with Neumann boundary conditions subsequent to the paper, [Sun, Numer Methods Partial Differential Equations (NMPDE) 25 (2009), 1320–1341]. A different compact difference scheme for the one‐dimensional linear heat equation is developed. Truncation errors of the proposed scheme are O2 + h4) for interior mesh point approximation and O2 + h3) for the boundary condition approximation with the uniform partition. The new obtained scheme is similar to the one given by Liao et al. (NMPDE 22 (2006), 600–616), while the major difference lies in no extension of source terms to outside the computational domain any longer. Compared with ones obtained by Zhao et al. (NMPDE 23 (2007), 949–959) and Dai (NMPDE 27 (2011), 436–446), numerical solutions at all mesh points including two boundary points are computed in our new scheme. The significant advantage of this work is to provide a rigorous analysis of convergence order for the obtained compact difference scheme using discrete energy method. The global accuracy is O2 + h4) in discrete maximum norm, although the spatial approximation order at the Neumann boundary is one lower than that for interior mesh points. The analytical techniques are important and can be successfully used to solve the open problem presented by Sun (NMPDE 25 (2009), 1320–1341), where analyzed theoretical convergence order of the scheme by Liao et al. (NMPDE 22 (2006), 600–616) is only O2 + h3.5) while the numerical accuracy is O2 + h4), and convergence order of theoretical analysis for the scheme by Zhao et al. (NMPDE 23 (2007), 949–959) is O2 + h2.5), while the actual numerical accuracy is O2 + h3). Following the procedure used for the new obtained difference scheme in this work, convergence orders of these two schemes can be proved rigorously to be O2 + h4) and O2 + h3), respectively. Meanwhile, extension to the case involving the nonlinear reaction term is also discussed, and the global convergence order O2 + h4) is proved. A compact ADI difference scheme for solving two‐dimensional case is derived. Finally, several examples are given to demonstrate the numerical accuracy of new obtained compact difference schemes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

10.
Two‐level penalty finite volume method for the stationary Navier–Stokes equations based on the P1 ? P0 element is considered in this paper. The method involves solving one small penalty Navier–Stokes problem on a coarse mesh with mesh size H = ?1 / 4h1 / 2, a large penalty Stokes problem on a fine mesh with mesh size h, where 0 < ? < 1 is a penalty parameter. The method we study provides an approximate solution with the convergence rate of same order as the penalty finite volume solution (u?h,p?h), which involves solving one large penalty Navier–Stokes problem on a fine mesh with the same mesh size h. However, our method can save a large amount of computational time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Summary This paper concerns the nonlinear filtering problem of calculating estimates E[f(xt)¦y s, st] where {x t} is a Markov process with infinitesimal generator A and {y t} is an observation process given by dy t=h(xt)dt +dwtwhere {w t} is a Brownian motion. If h(xt) is a semimartingale then an unnormalized version of this estimate can be expressed in terms of a semigroup T s,t y obtained by a certain y-dependent multiplicative functional transformation of the signal process {x t}. The objective of this paper is to investigate this transformation and in particular to show that under very general conditions its extended generator is A t y f=ey(t)h(A– 1/2h2)(e–y(t)h f).Work partially supported by the U.S. Department of Energy (Contract ET-76-C-01-2295) at the Massachusetts Institute of Technology  相似文献   

12.
Equally-weighted formulas for numerical differentiation at a fixed pointx=a, which may be chosen to be 0 without loss in generality, are derived for (1) whereR 2n =0 whenf(x) is any (2n)th degree polynomial. Equation (1) is equivalent to (2) ,r=1,2,..., 2n. By choosingf(x)=1/(z–x),x i fori=1,..., n andx i fori=n+1,..., 2n are shown to be roots ofg n (z) andh n (z) respectively, satisfying (3) . It is convenient to normalize withk=(m–1)!. LetP s (z) denotez s · numerator of the (s+1)th diagonal member of the Padé table fore x , frx=1/z, that numerator being a constant factor times the general Laguerre polynomialL s –2s–1 (x), and letP s (X i )=0, i=1, ...,s. Then for anym, solutions to (1) are had, for2n=2ms, forx i , i=1, ...,ms, andx i , i=ms+1,..., 2ms, equal to all them th rootsX i 1/m and (–X i )1/m respectively, and they give {(2s+1)m–1}th degree accuracy. For2sm2n(2s+1)m–1, these (2sm)-point solutions are proven to be the only ones giving (2n)th degree accuracy. Thex i 's in (1) always include complex values, except whenm=1, 2n=2. For2sm<2n(2s+1)m–1,g n (z) andh n (z) are (n–sm)-parameter families of polynomials whose roots include those ofg ms (z) andh ms (z) respectively, and whose remainingn–ms roots are the same forg n (z) andh n (z). Form>1, and either 2n<2m or(2s+1)m–1<2n<(2s+2)m, it is proven that there are no non-trivial solutions to (1), real or complex. Form=1(1)6, tables ofx i are given to 15D, fori=1(1)2n, where 2n=2ms ands=1(1) [12/m], so that they are sufficient for attaining at least 24th degree accuracy in (1).Presented at the Twelfth International Congress of Mathematicians, Stockholm, Sweden, August 15–22, 1962.General Dynamics/Astronautics. A Division of General Dynamics Corporation.  相似文献   

13.
We show that if f1, f2 are bounded holomorphic functions in the unit ball of ℂn such that , |f1(z)|2 + |f2(z)2|2 ≥ δ2 >; 0, then any functionh in the Hardy space ,p < +∞ can be decomposed ash = f1h1 + f2h2 with . The Corona theorem in would be the same result withp = +∞ and this question is still open forn ≳-2, but the preceding result goes in this direction.  相似文献   

14.
An effective finite difference scheme for solving the nonlinear Fermi–Pasta–Ulam (FPU) problem is derived. The most important feature of the scheme inherits energy conservation property from the nonlinear FPU problem. The unique solvability and the convergence of the difference scheme are proved by the energy method. The convergence order is in the maximum norm, where τ is the temporal grid size and h is the spatial grid size, respectively. In addition, the stability of the difference scheme is obtained. Numerical results are presented to support the theoretical analysis and verify numerically the energy conservation property.© 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 187‐209, 2014  相似文献   

15.
In this article, we develop a two‐grid algorithm for nonlinear reaction diffusion equation (with nonlinear compressibility coefficient) discretized by expanded mixed finite element method. The key point is to use two‐grid scheme to linearize the nonlinear term in the equations. The main procedure of the algorithm is solving a small‐scaled nonlinear equations on the coarse grid and dealing with a linearized system on the fine space using the Newton iteration with the coarse grid solution. Error estimation to the expanded mixed finite element solution is analyzed in detail. We also show that two‐grid solution achieves the same accuracy as long as the mesh sizes satisfy H = O(h1/2). Two numerical experiments are given to verify the effectiveness of the algorithm. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

16.
Let p be an odd prime number, and pn0{p^{n_0}} the highest power of p dividing 2 p−1 − 1. Let Kn=Q(zpn+1){K_n={\bf Q}(\zeta_{p^{n+1}})} and Ln,j=Kn+(z2j+2){L_{n,j}=K_n^+(\zeta_{2^{j+2}})} for j ≥ 0. Let hn*{h_n^*} be the relative class number of K n , and h n,j the class number of L n,j , respectively. Let n be an integer with nn 0. We prove that if the ratio hn*/hn-1*{h_n^*/h_{n-1}^*} is odd, then h n,j /h n−1,j is odd for any j ≥ 0.  相似文献   

17.
In this article, unconditional superconvergent analysis of a linearized fully discrete mixed finite element method is presented for a class of Ginzburg–Landau equation based on the bilinear element and zero‐order Nédélec's element pair (Q11/Q01 × Q10). First, a time‐discrete system is introduced to split the error into temporal error and spatial error, and the corresponding error estimates are deduced rigorously. Second, the unconditional superclose and optimal estimate of order O(h2 + τ) for u in H1‐norm and p = ?u in L2‐norm are derived respectively without the restrictions on the ratio between h and τ, where h is the subdivision parameter and τ, the time step. Third, the global superconvergent results are obtained by interpolated postprocessing technique. Finally, some numerical results are carried out to confirm the theoretical analysis.  相似文献   

18.
A Menon design of order h2 is a symmetric (4h2,2h2h,h2h)‐design. Quasi‐residual and quasi‐derived designs of a Menon design have parameters 2‐(2h2 + h,h2,h2h) and 2‐(2h2h,h2h,h2h‐1), respectively. In this article, regular Hadamard matrices are used to construct non‐embeddable quasi‐residual and quasi‐derived Menon designs. As applications, we construct the first two new infinite families of non‐embeddable quasi‐residual and quasi‐derived Menon designs. © 2008 Wiley Periodicals, Inc. J Combin Designs 17: 53–62, 2009  相似文献   

19.
In this paper, a fast second‐order accurate difference scheme is proposed for solving the space–time fractional equation. The temporal Caputo derivative is approximated by ?L2 ‐1σ formula which employs the sum‐of‐exponential approximation to the kernel function appeared in Caputo derivative. The second‐order linear spline approximation is applied to the spatial Riemann–Liouville derivative. At each time step, a fast algorithm, the preconditioned conjugate gradient normal residual method with a circulant preconditioner (PCGNR), is used to solve the resulting system that reduces the storage and computational cost significantly. The unique solvability and unconditional convergence of the difference scheme are shown by the discrete energy method. Numerical examples are given to verify numerical accuracy and efficiency of the difference schemes.  相似文献   

20.
Consider the random graph on n vertices 1,…,n. Each vertex i is assigned a type xi with x1,…,xn being independent identically distributed as a nonnegative random variable X. We assume that EX3< . Given types of all vertices, an edge exists between vertices i and j independent of anything else and with probability \begin{align*}\min \{1, \frac{x_ix_j}{n}\left(1+\frac{a}{n^{1/3}} \right) \}\end{align*}. We study the critical phase, which is known to take place when EX2 = 1. We prove that normalized by n‐2/3the asymptotic joint distributions of component sizes of the graph equals the joint distribution of the excursions of a reflecting Brownian motion with diffusion coefficient \begin{align*}\sqrt{{\textbf{ E}}X{\textbf{ E}}X^3}\end{align*}and drift \begin{align*}a-\frac{{\textbf{ E}}X^3}{{\textbf{ E}}X}s\end{align*}. In particular, we conclude that the size of the largest connected component is of order n2/3. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 43, 486–539, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号