首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Copolyamides based on polyamide‐6,6 (PA‐6,6) were prepared by solid‐state modification (SSM). Para‐ and meta‐xylylenediamine were successfully incorporated into the aliphatic PA‐6,6 backbone at 200 and 230 °C under an inert gas flow. In the initial stage of the SSM below the melting temperature of PA‐6,6, a decrease of the molecular weight was observed due to chain scission, followed by a built up of the molecular weight and incorporation of the comonomer by postcondensation during the next stage. When the solid‐state copolymerization was continued for a sufficiently long time, the starting PA‐6,6 molecular weight was regained. The incorporation of the comonomer into the PA‐6,6 main chain was confirmed by size exclusion chromatography (SEC) with ultraviolet detection, which showed the presence of aromatic moieties in the final high‐molecular weight SSM product. The occurrence of the transamidation reaction was also proven by 1H nuclear magnetic resonance (NMR) spectroscopy. As the transamidation was limited to the amorphous phase, this SSM resulted in a nonrandom overall structure of the PA copolymer as shown by the degree of randomness determined using 13C NMR spectroscopy. The thermal properties of the SSM products were compared with melt‐synthesized copolyamides of similar chemical composition. The higher melting and higher crystallization temperatures of the solid state‐modified copolyamides confirmed their nonrandom, block‐like chemical microstructure, whereas the melt‐synthesized copolyamides were random. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5118–5129  相似文献   

2.
Based on 2, 5‐bis[(4‐alkoxyphenyl)oxycarbonyl]styrenes (M‐OCm, m is the number of the carbons of alkyl tails, m = 1, 4, and 18), three series of binary copolymers with high‐molecular weights, {poly(M‐OC1‐co‐M‐OC4), poly(M‐OC1‐co‐M‐OC18), and poly(M‐OC4‐co‐M‐OC18)} have been prepared via free‐radical polymerization. The random nature of the copolymers was expected on the basis of the assumed similar reactivities because of the analogous monomers. The phase behaviors of copolymers were studied by DSC, POM, and one‐dimensional wide‐angle X‐ray diffraction. The results showed that liquid crystalline (LC) phase structures of copolymers, containing smectic phase, reentrant isotropic phase, columnar phase. and isotropic phase, were strongly depended on the composition and the alkyl length due to the competing among the steric effect, the microphase separation and the driving force of the entropy. When one of them occupied a dominant position, the LC phase structure can be presented for the copolymers. Otherwise, the LC phase structure is lost despite the pair of corresponding homopolymers forming mesogenic structure. Therefore, through copolymerization, LC behavior of the mesogen‐jacketed liquid crystalline polymers can be greatly varied. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2804–2816  相似文献   

3.
The phase‐transfer catalyzed polycondensation of α,α′‐dichloro‐p‐xylene with 4,4′‐isopropylidenediphenol was carried out using benzylethylammonium chloride in a two‐phase system of an aqueous alkaline solution and benzene at 60 °C under nitrogen atmosphere. The rate of polycondensation was expressed as the combined terms of quaternary onium cation and 4,4′‐isopropylidenediphenolate anion rather than the feed concentration of catalyst and 4,4′‐isopropylidenediphenol. The measured concentrations of hydroxide and chloride anion in the aqueous solution and α,α′‐dichloro‐p‐xylene in the organic phase were used to obtain the reaction rate constant with the integral method, and to analyze the polycondensation mechanism with a cyclic phase‐transfer initiation step in the heterogeneous liquid–liquid system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3059–3066, 2000  相似文献   

4.
Polymethyl(alkoxy)siloxane copolymers, poly(MTES‐co‐TEOS), and poly(MTMS‐co‐TMOS), are prepared by acid‐catalyzed controlled hydrolytic co‐polycondensation of methyl(trialkoxy)silane MeSi(OR)3 (R = Et (MTES) and Me (MTMS)) and tetra‐alkoxysilane Si(OR)4 (R = Et (TEOS) and Me (TMOS)), respectively. The products are purified by fractional precipitation to provide polymethyl(alkoxy)siloxane copolymers with molecular weight 1000–10,000 (poly(MTES‐co‐TEOS)) or 1700–100,000 (poly(MTMS‐co‐TMOS)) that are stable to self‐condensation. These polymers are soluble in common organic solvents except for hexane, and form flexible and transparent free‐standing films with a tensile strength of 4.0–10.0 MPa. The structure of the polymethyl(alkoxy)siloxane copolymers is thought to be a random or a block co‐polymer. They are found to provide coating films with an adhesive strength up to 10, a refractive index of 1.36–1.40, and a dielectric constant of 3.5–3.6. The products also show better weathering stability than polyethoxysiloxane due to the hydrolytic polycondensation of TEOS. Field emission‐scanning electron micrography analysis reveals that coating films are composed of a micro‐phase separated structure. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4732–4741  相似文献   

5.
We demonstrate that real‐time laser interference microscopy can be used to directly observe the dynamics of film formation and phase separation processes for a bar‐spread polystyrene/poly(methyl methacrylate) blend. The ability to dynamically image laser interference patterns allows compete drying curves and polymer content to be determined throughout the film formation process. The polymer content at which phase separation structure first is observed in the interference micrograph sequence is in good agreement with calculated spinodal curves. Morphology evolution proceeds from phase separation onward via coarsening and coalescence to arrive at the final domain structure. In comparison, spin coating the same polymer blend results in structure evolution being quenched further from equilibrium due to the faster drying rate. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 985–992  相似文献   

6.
A poly(ethyl acrylate) polymer network was swollen with different concentrations of the nonpolar solvent p‐xylene, cpx, from xerogel until saturation (0 ≤ cpx ≤ 0.85). Differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC) techniques were employed to study the polymer segmental dynamics and the solvent thermal transitions in homogeneous (cpx < 0.20) and partially crystallized (cpx ≥ 0.20) PEA/p‐xylene mixtures. Our DSC measurements indicate that p‐xylene undergoes cold crystallization for intermediate solvent concentrations, 0.20 ≤ cpx ≤ 0.30 while for higher cpx values crystallization takes place during cooling. The results show that for cpx ≤ 0.30 the Tg decreases with increasing cpx (plasticization effect) obeying the respective Fox equation. For the same cpx range we found that both the dielectric strength and the heat capacity increment of the segmental (α) relaxation process increase gradually with cpx whereas the distribution of relaxation times for the underlying molecular relaxations does not change. For cpx > 0.30 the partially crystallized mixtures exhibit a constant Tg corresponding to the gel phase of PEA with an amount of p‐xylene which is not able to crystallize under any conditions. The concentration of this noncrystallized p‐xylene, cUCpx, has been estimated to be between 0.12 and 0.15, independent of the total p‐xylene concentration in the mixtures. When a separate p‐xylene crystal phase is formed (for cpx > 0.30) the segmental dielectric strength and heat capacity increment decrease significantly exhibiting values significantly lower than those measured for the homogeneous gels. In addition, we found that the presence of p‐xylene crystals may induce marginal spatial heterogeneity of polymer (or p‐xylene) concentration within the gel phase affecting thus slightly the breath of the segmental relaxation of PEA. We attribute these results to restrictions of polymer segmental configurations due to constraints imposed by the p‐xylene crystals and/or to the immobilization of a part of the polymer chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

7.
The effects of the copolymer microstructure on the morphology evolution in polyethylene/poly(ethylene‐co‐α‐olefin) blends were investigated. Microscopy revealed that the melt‐phase morphology, inferred from the solid‐state morphologies of annealed and quenched samples, was strongly affected by the copolymer structure, that is, the branch content and branch length. Higher molecular weight α‐olefin comonomer residues and residue contents in the copolymers led to faster coarsening of the morphology. The molecular weight of the polyethylene and the copolymers affected the coarsening rates of the morphology, principally through its influence on the melt viscosity. The effects of the molecular weight were largely explained by the normalization of the coarsening rate data with respect to the thermal energy and zero‐shear‐rate viscosity. Thus, the effect of the molecular weight on the compatibility of the blends was much smaller than the effects of the branch length and branch number. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 965–973, 2004  相似文献   

8.
Structural evolution of gel‐spun ultra‐high molecular weight polyethylene fibers with high concentration solution via hot stretching process was investigated by in situ small‐angle X‐ray scattering, in situ wide‐angle X‐ray diffraction measurements, scanning electron microscopy, and differential scanning calorimetry. With the increase of stretching strain, the long period continuously increases at relative lower stretching temperature, while it first increases and then decreases rapidly at relative higher stretching temperature. The kebab thickness almost keeps constant during the whole hot‐stretching process and the kebab diameter continually decreases for all stretching temperatures. Moreover, the length of shish decreases slightly and the shish quantity increases although there is almost no change in the diameter of shish crystals during the hot stretching process. The degree of crystal orientation at different temperatures is as high as above 0.9 during the whole stretching process. These results indicate that the shish‐kebab crystals in ultra‐high molecular weight polyethylene fibers can transform continuously into the micro‐fibril structure composed mostly of shish crystals through the hot stretching process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 225–238  相似文献   

9.
A new fluorinated version of a cyclic β‐aminoalcohol gelator derived from 1,2,3,4‐tetrahydroisoquinoline is presented. The gelator is able to gel various nonprotic solvents through OH???N hydrogen bonds and additional CH???F interactions due to the introduction of fluorine. A bimolecular lamellar structure is formed in the gel phase, which partly preserves the pattern of molecular organization in the single crystal. The racemate of the chiral gelator shows lower gelation ability than its enantiomer because of a higher tendency to form microcrystals, as shown by X‐ray diffraction analysis. The influence of fluorination on the self‐assembly of the gelator and the properties of the gel was investigated in comparison to the original fluorine‐free gel system. The introduction of fluorine brings two new features. The first is good recognition of o‐xylene by the gelator, which induces an in situ transition from gels of o‐xylene and of an o‐xylene/toluene mixture to identical single crystals with unique tubular architecture. The second is the enhanced stability of the toluene gel towards ions, including quaternary ammonium salts, which enables the preparation of a stable toluene gel in the presence of chloroaurate or chloroplatinate. The gel system can be used as a template for the synthesis of spherical gold nanoparticles with a diameter of 5 to 9 nm and wormlike platinum nanostructures with a diameter of 2 to 3 nm and a length of 5 to 12 nm. This is the first example of a synthesis of platinum nanoparticles in an organogel medium. Therefore, the appropriate introduction of a fluorine atom and corresponding nonbonding interactions into a known gelator to tune the properties and functions of a gel is a simple and effective tactic for design of a gel system with specific targets.  相似文献   

10.
High molecular weight star‐shaped polystyrenes were prepared via the coupling of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) terminated polystyrene oligomers with divinylbenzene (DVB) in m‐xylene at 138 °C. The optimum ratio of the coupling solvent (m‐xylene) to divinylbenzene was determined to be 9 to 1 based on volume. Linear polystyrene oligomers (Mn = 19,300 g/mol, Mw/Mn = 1.10) were prepared in bulk styrene using benzoyl peroxide in the presence of TEMPO at approximately 130 °C under an inert atmosphere. Coupling of the TEMPO‐terminated oligomers under optimum conditions resulted in a product with a number average molecular weight exceeding 300,000 g/mol (Mw/Mn = 3.03) after 24 h, suggesting the formation of relatively well‐defined star‐shaped polymers. Additionally, the intrinsic viscosities of the star‐shaped products were lower than calculated values for linear analogs of equivalent molecular weight, which further supported the formation of a star‐shaped architecture. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 216–223, 2001  相似文献   

11.
A series of side‐chain liquid‐crystal polymers, poly[6‐[4‐(4′‐n‐alkyl benzoateazo)phenoxy]‐hexylmethacrylate]s (PMAzoCOORm, m = 1, 2, 3, 4, 5, 6, 8, 10, 14, and 18) have been prepared by two synthetic methods. The chemical structure of the monomers was confirmed by 1H NMR and mass spectrometry. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatograph. The phase behaviors of polymers were investigated by the combination of techniques including differential scanning calorimetry, polarized optical microscopy, and small‐angle X‐ray scattering. For m = 1, 2, 3, 4, 5, and 6, the polymers exhibited a monosmectic A phase in which the smectic layer period was almost identical to the side‐chain length. In addition, for m = 2, 3, 4, and 5, they presented the monosmectic C phase in low temperature; moreover, the tilt angle increased from 23.3 to 40.5°. For m = 8, 10, 14, and 18, the polymers showed a bilayer smectic A phase in which the layer spacing was larger than a fully extended side chain but less than two extended chains. On the other hand, for the clearing point, with the increasing of m, it first decreased, and then increased. All of these indicated that the length of alkyl tails played an important role in the phase behaviors of these polymers. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2759–2768  相似文献   

12.
The influence of an in situ‐grown, sol → gel‐derived silicon oxide filler on mechanical, gas permeation and solvent affinity properties of Surlyn® materials, and melt processibility of Surlyn®/[silicon oxide] hybrid resin, was studied. Tensile modulus increases while elongation‐at‐break decreases with increasing silicon oxide uptake. He gas permeation vs. pressure profiles imply dual mode sorption. Swelling in n‐hexane, 1‐PrOH and xylene decreases as silicon oxide loading increases, the highest uptake being that of xylene. [Surlyn®Zn+2]/[silicon oxide] has better solvent resistance than the H‐form hybrid for each solvent. Affinity of the Zn‐form hybrid for xylene is considerably greater than that for 1‐PrOH and n‐hexane. Melt flow index of the filled H‐form is lower than that of the unfilled H‐form but higher than that of the partially Zn neutralized unfilled form. FTIR analysis of hybrids previously subjected to the melt flow index experiment shows that the silicon oxide phase remained intact but that the high temperatures drove condensation reactions between SiOH groups. After in situ sol–gel reactions and drying [Surlyn®‐H]/[silicon oxide] flakes were passed through an extruder to assess the effect on silicon oxide structure of melt‐processing conditions. All silicon oxide IR fingerprint bands for the processed hybrid persist, the spectrum closely resembling that of a nonextruded hybrid including the signature of Si–OH groups. 29Si solid‐state NMR spectroscopy was used to probe degree of molecular connectivity within the silicon oxide phase. The spectrum is consistent with those of nonextruded hybrids in that Si atom coordination around SiO4 units is predominantly Q3 and Q4, the bias in the distribution toward Q3 being in harmony with the IR results. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 143–154, 1999  相似文献   

13.
N‐alkyl urea peptoid oligomers containing glucose or mannose have been synthesized and characterized. The oligomers were subsequently polymerized using a step‐growth polymerization with hexamethylene diisocyanate. Equal moles of both monomers were used to guarantee high‐molecular weight polymers. The polymers were characterized by gel permeation chromatography, nuclear magnetic resonance, and Fourier‐transform infrared spectroscopy, and contact angle measurements of solvent cast thin films. Sulfation of the final polymers was achieved using a SO3/pyridine complex in pyridine to afford the heparin biomimetics. The average degree of sulfation was calculated to be 3.5 sulfates per saccharide as measured by elemental analysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5230–5238  相似文献   

14.
In this article, the polydispersity of the ethylene sequence length (ESL) in ethylene/α‐olefin copolymers was studied by atomic force microscopy (AFM) and the thermal‐fractionation technique. The crystal morphology observation by AFM showed that morphology changed gradually with decreasing average ESL from complete lamellae over shorter and more curved lamellae to a granular‐like morphology, and the mixed morphology was observed after stepwise crystallization from phase‐separated melt. This result indicated that the ethylene sequence with different lengths crystallized into a crystalline phase with a different size and stability at the copolymer systems. The thermal‐fractionation technique was used to characterize the polydispersity of ESL. Three of the following statistical terms were introduced to describe the distribution of ESL and the lamellar thickness: the arithmetic mean L?n, the weight mean L?w, and the broadness index I = L?w/L?n. It was concluded that the polydispersity of ESL could be quantitatively characterized by the thermal‐fractionation technique. The effects of temperature range, temperature‐dependent specific heat capacity Cp of copolymer, and the molecular weight on the results of thermal fractionation were discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 813–821, 2002  相似文献   

15.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

16.
Novel structural microspheres of the Janus type, with microphase‐separated polystyrene (PS) and poly(tert‐butyl methacrylate) (PBMA) shells and crosslinked poly(2‐vinyl pyridine) (PVP) cores, were synthesized with the crosslinking of PVP spherical domains in poly(styrene‐block‐2‐vinyl pyridine‐blocktert‐butyl methacrylate) ABC triblock terpolymer film with PS/PBMA lamellae–PVP spherical structures. For the formation of lamellae‐sphere structures, toluene, which was a selective solvent for the ABC triblock terpolymer, was used. With the crosslinking of PVP spheres in the microphase‐separated film with 1,4‐diiodobutane gas, the microphase structure of the terpolymer was fixed, and microspheres composed of microphase‐separated PS and PBMA shells and P2VP cores were obtained. The size distribution of the purified microspheres was narrow. The characteristics of the microspheres and their aggregation behaviors in selective solvents were investigated by transmission electron microscopy and light scattering methods. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2091–2097, 2000  相似文献   

17.
A mesogen‐jacketed liquid crystalline polymer (MJLCP) containing triphenylene (Tp) moieties in the side chains with 12 methylene units as spacers (denoted as PP12V) was synthesized. Its liquid crystalline (LC) phase behavior was studied with a combination of solution 1H NMR, solid‐state NMR, gel permeation chromatography, thermogravimetric analysis, polarized light microscopy, differential scanning calorimetry, and one‐ and two‐dimensional wide‐angle X‐ray diffraction. By simply varying the temperature, two ordered nanostructures at sub‐10‐nm length scales originating from two LC building blocks were obtained in one polymer. The low‐temperature phase of the polymer is a hexagonal columnar phase (ΦH, a = 2.06 nm) self‐organized by Tp discotic mesogens. The high‐temperature phase is a nematic columnar phase with a larger dimension (a′ = 4.07 nm) developed by the rod‐like supramolecular mesogen—the MJLCP chain as a whole. A re‐entrant isotropic phase is found in the medium temperature range. Partially homeotropic alignment of the polymer can be achieved when treated with an electric field, with the polymer in the ΦH phase developed by the Tp moieties. The incorporation of Tp moieties through relatively long spacers (12 methylene units) disrupts the ordered packing of the MJLCP at low temperatures, which is the first case for main‐chain/side‐chain combined LC polymers with MJLCPs as the main‐chain LC building block to the best of our knowledge. The relationship of the molecular structure and the novel phase behavior of PP12V has implications in the design of LC polymers containing nanobuilding blocks toward constructing ordered nanostructures at different length scales. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 295–304  相似文献   

18.
Novel linear carbohydrate‐derived [m,n]‐polyurethanes are successfully prepared using D ‐mannitol as renewable and low cost starting material. The key comonomer, 1,6‐di‐O‐phenylcarbonyl‐2,3,4,5‐tetra‐O‐methyl‐D ‐mannitol is polymerized with a diamine synthesized from D ‐mannitol or with alkylenediamines. These polymerization reactions afford, respectively, a [6,6]‐polyurethane entirely based on a carbohydrate derivative or [m,n]‐polyurethanes constituted by a poly‐O‐methyl substituted unit alternating with a polymethylene chain. All these polymers are stereoregular, as result of the C2 axis of symmetry of mannitol. The optically active polyurethanes are characterized by standard methods (FTIR, RMN, GPC, TGA, and DSC). Thus, GPC analysis reveals weight‐average molecular weights between 18,000 and 25,000 Da. Thermal studies (DSC) indicate that the polymers obtained are amorphous materials with Tg values dependent on the structure and chain length of the diamine constituent. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Long‐subchain hyperbranched polystyrene (lsc‐hp PSt) with uniform subchain length was obtained through copper‐catalyzed azide‐alkyne cycloaddition click chemistry from seesaw macromonomer of PSt having one alkynyl group anchored at the chain centre and two azido group attached to both chain ends [alkynyl‐(PSt‐N3)2]. After precipitation fraction, different portions of lsc‐hp PSt having narrow overall molecular weight distribution were obtained for further grafting with alkynyl‐capped poly(N‐isopropylacrylamide) (alkynyl‐PNIPAM), which was obtained via single‐electron transfer living radical polymerization of NIPAM with propargyl 2‐bromoisobutyrate as the initiator and grafted onto the peripheral azido groups of lsc‐hp PSt via click chemistry. Thus, amphiphilic lsc‐hp PSt grafted with PNIPAM chains (lsc‐hp PSt‐g‐PNIPAM) was obtained and would have star‐like conformation in tetrahydrofuran (THF). By replacing THF with water, lsc‐hp PSt‐g‐PNIPAM was dissolved at molecular level in aqueous solution due to the hydrophilicity of PNIPAM and exhibited thermal induced shrinkage of PNIPAM arms. The water‐insoluble lsc‐hp PSt would collapse densely and could be served as a reservoir to absorb hydrophobic chemicals in aqueous solution. The influence of overall molecular weight of lsc‐hp PSt on the absorption of pyrene was studied. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
The structure evolution of the oriented layer (skin) and unoriented layer (core) from injection‐molded isotactic polypropylene samples upon uniaxial drawing is probed by in situ synchrotron X‐ray scattering. The X‐ray data analysis approach, called “halo method”, is used to semiquantitatively identify the transformation process of crystal phase upon uniaxial drawing. The results verify the validation of the stress‐induced crystal fragmentation and recrystallization process in the deformation of the injection‐molded samples under different temperatures. Furthermore, the end of strain softening region in the engineering stress‐strain curves explicitly corresponds to the transition point from the stress‐induced crystal fragmentation to recrystallization process. Basically, the skin and core layers of the injection‐molded parts share the similar deformation mechanism as aforementioned. The stretching temperature which dramatically affects the relative strength between the entanglement‐induced tie chains and the adjacent crystalline lamellae determines the crystal structural evolution upon drawing. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1618–1631  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号