首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A silicon‐containing benzoxazine BATMS‐Bz (1,3‐bis(3‐aminopropyl)tetramethyldisiloxane‐benzoxazine) was used for polybenzoxazine modification by means of formation of benzoxazine copolymers with 3,4‐dihydro‐3‐phenyl‐2H‐1,3‐benzoxazine (Ph‐Bz) and 3‐furfuryl‐3,4‐dihydro‐2H‐1,3‐benzoxazine (F‐Bz), respectively. Ph‐Bz/BATMS‐Bz copolymers showed a positive deviation due the presence of intermolecular hydrogen bonding. However, this effect was not observed with F‐Bz/BATMS‐Bz copolymers. Meanwhile, BATMS‐Bz incorporation exhibited significant effect on toughening polybenzoxazines. It is therefore demonstrated that BATMS‐Bz is a high performance modifier to simultaneously enhance the Tg and toughness of polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1007–1015, 2007  相似文献   

2.
A trifunctional benzoxazine, 1,3,5‐tris(3‐phenyl‐3,4‐dihydro‐2H‐benzo[1,3]oxazin‐6‐yl)benzene (T‐Bz) was synthesized and in an effort to reduce its curing temperature (curing maxima at 238 °C), it was mixed with various phenolic nucleophiles such as phenol (PH), p‐methoxy phenol (MPH), 2‐methyl resorcinol (MR), hydroquinone (HQ), pyrogallol (PG), 2‐naphthol (NPH), 2,7‐dihydroxy naphthalene (DHN), and 1,1'‐bi‐2‐naphthol (BINOL). The influence of these phenolic nucleophiles on ring‐opening polymerization temperature of T‐Bz was examined by DSC and FTIR analysis. T‐Bz undergoes a complete ring‐opening addition reaction in the presence of bi‐ and trifunctional phenolic nucleophiles (MR/HQ/PG/DHN) at 140 °C (heated for 3 h) and forms a networked polybenzoxazine (NPBz). The NPBzs showed a high thermal stability with Td20 of 350–465 °C and char yield of 67–78% at 500 °C; however, a diminutive weight loss (6.9–9.8%) was observed at 150–250 °C (Td5: 215–235 °C) due to degradation of phenolic end groups. This article also gives an insight on how the traces of phenolic impurities can alter the thermal properties of pure benzoxazine monomer as well as its corresponding polymer. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2811–2819  相似文献   

3.
Coumarins are used as a natural renewable resource to synthesize coumarin‐containing benzoxazine resins. The coumarin‐containing benzoxazines are fully characterized in terms of their chemical structure by Fourier‐transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. The influence of electronic effects caused by the substituents on the polymerization temperature is also evaluated. Thermal properties of the resulting thermosets are characterized by differential scanning calorimetry and thermogravimetric analysis, showing good stability and char yields higher than 50%. The coumarin‐containing polybenzoxazine thermosets show Tg values in the range between 160 and 190 °C. Thus, the herein presented coumarin‐containing benzoxazine resins are proven to be competitive monomers when compared with other petroleum‐based benzoxazine resins toward the generation of high‐performance thermoset. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1428‐1435  相似文献   

4.
We report our work for preparing cross‐linked polyimide via a series of imide functional benzoxazine resins as precursors. The structures of synthesized monomers have been confirmed by 1H NMR and FT‐IR. Among this class of benzoxazine monomers, the ortho‐imide functional benzoxazine resins show useful features both in the synthesis of benzoxazine monomers and the properties of the corresponding thermosets. For the cross‐linked polyimides based on ortho‐imide functional benzoxazine, an additional route is adopted to form a more thermally stable cross‐linked polybenzoxazole with the release of carbon dioxide. The ortho‐imide functional benzoxazine resins show the possibility to form high performance and even super high performance thermosets with low cost and easy processability. The thermal properties are evaluated by DSC and TGA. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1330–1338  相似文献   

5.
A difunctional benzoxazine (coPh‐apa) with a conjugated alkyne group is synthesized by the oxidative coupling reaction from a monocycle‐benzoxazine (Ph‐apa) containing an alkyne group. A model compound, 1,4‐diphenylbutadiyne (coPa), is used to study the curing reaction process of coPh‐apa by DSC, Fourier transform infrared spectroscopy, and 13C NMR, and the results suggest that the conjugated alkyne groups are involved in the crosslinking reaction via the trimerization reaction of the conjugated alkynyl groups and the Diels–Alder reaction. Furthermore, thermal properties of the polybenzoxazine are studied by dynamic thermomechanical analysis and thermogravimetric analysis. A glass‐transition temperature (Tgs) of as high as 412 °C and a char yield of 75.6% at 800 °C under nitrogen are obtained with the aid of the conjugated alkyne groups. Its excellent heat resistance dominates most thermosetting resins and will serve for heat shields. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1587–1592  相似文献   

6.
Novel high‐molecular‐weight polybenzoxazine precursors, namely AB‐type benzoxazine precursors, were synthesized from aminophenols and formaldehyde. Both 1H NMR and IR confirmed the structure of the precursors, indicating the presence of a cyclic benzoxazine structure in the backbone of the precursors. The weight‐average molecular weight was estimated by size exclusion chromatography to be to in the range of 1300–4500. The precursors gave self‐standing thin films when their solutions were cast in dioxane over glass plates and dried, and upon a gradual thermal cure up to 250 °C, they afforded polybenzoxazine films. The viscoelastic analyses showed that the glass transition temperatures of the polybenzoxazine films obtained from these novel precursors were as high as 260–300 °C. Thermogravimetric analysis results indicated that the onset of decomposition and the char yield of the thermosets derived from these AB‐type precursors were higher than those of traditional polybenzoxazine. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1878–1888, 2007.  相似文献   

7.
A benzoxazine compound with a maleimide group, 3‐phenyl‐3,4‐dihydro‐2H‐6‐(N‐maleimido)‐1,3‐benzoxazine (HPM‐Ba), was prepared from N‐(4‐hydroxyphenyl)maleimide, formaldehyde, and aniline. The chemical structure of HBM‐Ba was identified by FT‐IR, 1H‐NMR, and elemental analysis. HPM‐Ba showed a melting point of 52–55 °C and good solubility in common organic solvents. HPM‐Ba showed a two‐stage process of thermal polymerization. The first stage arose from the polymerization of maleimide groups, and the second one was the ring‐opening reaction of benzoxazine groups. Fusible polymaleimides with a Tg of around 100 °C could be obtained by thermally polymerizing HPM‐Ba at 130 °C. Further polymerizing the polymaleimides at 240 °C resulted in a completely cured resin showing a Tg at 204 °C. Good thermal stability and self‐extinguishing behavior was observed with the cured polybenzoxazine resins. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5954–5963, 2004  相似文献   

8.
The thermal properties of physical blends containing benzoxazine monomer and polycaprolactone (PCL) were monitored by DSC and Fourier transform infrared spectroscopy (FTIR). The ring‐opening reaction and subsequent polymerization reaction of the benzoxazine were facilitated significantly by the presence of a PCL modifier. Hydrogen‐bond formation between the hydroxyl groups of polybenzoxazine and the carbonyl groups of PCL was evident from the FTIR spectra. Only one glass‐transition temperture (Tg) value was found in the composition range investigated, and the Tg value of the resulting blend appeared to be higher in the blend with a greater amount of PCL. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 736–749, 2001  相似文献   

9.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Novel polybenzoxazine precursor containing m‐carborane unit in the main‐chain has been firstly synthesized through click reaction of diazidomethyl m‐carborane (DAMC) and diacetylene bisbenzoxazine (DABB). Meanwhlie, the traditional polybenzoxazine precursor was also prepared through click reaction of diazidomethyl p‐benzene (DAPB) and DABB as a control. 1H NMR was used to confirm the structures of the monomers and the resulting polymers. FT‐IR and differential scanning calorimetry (DSC) were used to study the curing behavior of carborane‐containing benzoxazine polymer (CCBP). Dynamic mechanical analysis (DMA) study demonstrated that the cured CCBP had high storage moduli and high Tg. Thermogravimetric analysis (TGA) and ablation test showed that the cured CCBP had outstanding thermo‐oxidative stability. During thermal ablation of cured CCBP, organic material was degraded, and a passivation layer with oxidized m‐carboranes was formed, which prevented the underlying polymer from further degradation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 973–980  相似文献   

11.
A polyaddition system consisted of a bifunctional Nn‐propyl benzoxazine and 2‐methylresorcinol ( MR ) that proceeds at ambient temperature has been developed. In this system, the aromatic ring of MR acted as a bifunctional monomer, reacting with a two equivalent amount of benzoxazine moieties via their ring‐opening reaction. The polyaddition gave the corresponding linear polymer bearing phenolic moieties bridged by Mannich‐type linkage in the main chain. The linear polymer had a high glass transition temperature, which was comparable to that of the linear polybenzoxazine synthesized by the ring‐opening polymerization of a monofunctional Nn‐propyl benzoxazine. The employment of a bifunctional N‐allyl benzoxazine in the polyaddition system resulted in the formation of the corresponding polymer with allyl pendants, which exhibited improved heat resistance due to its thermally induced crosslinking reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3867–3872  相似文献   

12.
A polybenzoxazine bearing allyl group in the side chain was synthesized by the ring‐opening polymerization of N‐allyl‐benzoxazine and was crosslinked by the two different processes, (1) thermally induced oligomerization of the allyl side chains and (2) radical addition of dithiol (thiol‐ene reaction) to the allyl side chains. The former process was promoted by adding 2,5‐dimethyl‐2,5‐di(tert‐butylperoxy)hexane as a radical source, leading to the improved yield of the networked polymer isolated as acetone‐insoluble fraction. The thiol‐ene reaction with using 1,6‐hexanedithiol was also an efficient method for crosslinking the polybenzoxazine. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

13.
Bis(m‐aminophenyl)methylphosphine oxide based benzoxazine (Bz‐BAMPO) was obtained using a three‐step synthetic method from the aromatic diamine and 2‐hydroxybenzaldehyde as starting materials. The structure and purity of the monomer was confirmed by elemental analysis, FTIR, 1H NMR, 13C NMR and 31P NMR spectra. The curing kinetics of Bz‐BAMPO was investigated by nonisothermal differential scanning calorimetry (DSC) at different heating rates and by FTIR spectroscopy. The isoconversional method was used to evaluate the dependence of the effective activation energy on the extent of conversion. The evolving factor analysis (EFA) method was applied to the spectroscopic FTIR data obtained in monitoring benzoxazine homopolymerizations. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7162–7172, 2008  相似文献   

14.
A new class of polybenzoxazine/montmorillonite (PBz/MMT) nanocomposites has been prepared by the in situ polymerization of the typical fluid benzoxazine monomer, 3‐pentyl‐5‐ol‐3,4‐dihydro‐1,3‐benzoxazine, with intercalated benzoxazine MMT clay. A pyridine‐substituted benzoxazine was first synthesized and quaternized by 11‐bromo‐1‐undecanol and then used for ion exchange reaction with sodium ions in MMT to obtain intercalated benzoxazine clay. Finally, this organomodified clay was dispersed in the fluid benzoxazine monomers at different loading degrees to conduct the in situ thermal ring‐opening polymerization. Polymerization through the interlayer galleries of the clay led to the PBz/MMT nanocomposite formation. The morphologies of the nanocomposites were investigated by both X‐ray diffraction and transmission electron microscopic techniques, which suggested the partially exfoliated/intercalated structures in the PBz matrix. Results of thermogravimetric analysis confirmed that the thermal stability and char yield of PBz nanocomposites increased with the increase of clay content. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
A diamine‐based benzoxazine monomer (Bz) and a liquid crystalline epoxy monomer (LCE) are synthesized, respectively. Subsequently, a benzoxazine‐epoxy interpenetrating polymer network (PBEI) containing liquid crystalline structures is obtained by sequential curing of the LCE and the Bz in the presence of imidazole. The results show that the preferential curing of LCE plays a key role in the formation mechanism of liquid crystalline phase. Due to the introduction of liquid crystalline structures, the thermal conductivity of PBEI increases with increasing content of LCE. When the content of LCE is 80 wt %, the thermal conductivity reaches 0.32 W m?1 K?1. Additionally, the heat‐resistance of PBEI is superior to liquid crystalline epoxy resin. Among them, PBEI55 containing equal weight of Bz and LCE has better comprehensive performance. Its thermal conductivity, glass transition temperature, and the 5 % weight loss temperature are 0.28 W m?1 K?1, 160 °C, and 339 °C, respectively. By introducing boron nitride (BN) fillers into PBEI55, a composite of PBEI/BN with the highest thermal conductivity of 3.00 W m?1 K?1 is obtained. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1813–1821  相似文献   

16.
A novel renewable based benzoxazine, 3‐(furan‐2‐ylmethyl)?8‐methoxy‐3,4‐dihydro‐2H‐1,3‐benzoxazine‐6‐formyl (Va‐Bz), has been synthesized from a lignin derived chemical “vanillin” without solvents. Poly (Va‐Bz) has high Tg and excellent thermal and adhesive properties. A mechanism of cross‐linking, due to electrophilic substitution at furan and decarboxylation of carboxylic group of benzene ring, is suggested. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 7–11  相似文献   

17.
The industrial applications of benzoxazines are limited due to their high curing temperatures. This drawback can be overcome by more reactive precursor compared to conventional benzoxazines or by application of efficient initiators. We report the synthesis of a new resorcinol‐based benzoxazine and its cationic polymerization with thermolatent super acids, namely organic sulfonium hexafluoroantimonates. This combination of a reactive precursor and an efficient initiator results in a curing temperature below 100 °C (differential scanning calorimetry onset) which is up to now one of the lowest polymerization temperatures for benzoxazine systems. Furthermore, the thermal stability of the formed polybenzoxazine has not been influenced by the applied initiators. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1693–1699  相似文献   

18.
A new class of polybenzoxazine precursors of combined molecular structure of benzoxazine in the open and ring form has been developed. Thermally curable benzoxazine networks were obtained by simultaneous photoinduced thiol‐ene and Catalytic Opening of the Lateral Benzoxazine Rings by Thiols (COLBERT). The thiol‐ene reactions were initiated by photolysis of a free radical photoinitiator, 2, 2‐dimethoxy‐2‐phenyl acetophenone (DMPA), and the competing COLBERT reaction was triggered by thiol compound, 1,2‐ethanedithiol, present in the reaction mixture. The extent of reactions was evaluated by conducting experiments both under UV irradiation and in dark using model benzoxazines. The precursor soft films (pre‐P(B‐ala‐DTE)) were prepared by irradiating solutions of diallyl functional benzoxazine (B‐ala), 1,2‐ethanedithiol and DMPA. The obtained pre‐P(B‐ala‐DTE) films were then cured through thermally activated ring opening reaction of remaining benzoxazine groups yielding a more rigid and tough film. Thermal and mechanical properties of the films were investigated by DSC, DMA and TGA and compared with a typical polybenzoxazine, P(B‐ala). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Modified novolac resins with benzoxazine rings were prepared and copolymerized with a glycidyl phosphinate. Their curing behavior and the thermal properties of the curing resins were studied. Copolymerization was studied with model compounds considering the functionality of the benzoxazine‐based phenolic resins and the easy isomerization of the glycidyl phosphinate. Phenolic novolac resin acts as an initiator but p‐toluensulfonic acid had to be used to decrease the curing temperature and to prevent glycidyl phosphinate from isomerizing. The materials obtained exhibited high glass‐transition temperatures and retardation on thermal degradation rates. V‐0 materials were obtained when the materials were tested for ignition resistance with the UL‐94 test. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 279–289, 2004  相似文献   

20.
Novel polyacetylenes, poly( 1 ) and poly( 2 ) substituted with benzoxazine rings were synthesized by the polymerization of the corresponding acetylene monomers 1 and 2 using Rh catalysts, [(nbd)RhCl]2, and (nbd)Rh+BPh4 (nbd = 2,5‐norbornadiene). The polymers were heated at 250 °C under N2 to obtain the corresponding polybenzoxazine resins, poly( 1 )′ and poly( 2 )′ possessing polyacetylene main chains via the ring‐opening polymerization of the benzoxazine moieties. The polyacetylene backbones were maintained after crosslinking reaction at 250 °C, which were confirmed by Raman spectroscopy. The benzoxazine resins were thermally highly stable as evidenced by differential scanning calorimetry and thermogravimetric analysis. The surface of poly( 1 )′ film became hydrophilic compared to that of poly( 1 ), while the surfaces of poly( 2 ) and poly( 2 )′ films showed almost the same hydrophilicity judging from the water contact angle measurement. Poly( 1 )′ and poly( 2 )′ exhibited refractive indices smaller than those of poly( 1 ) and poly( 2 ). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1884–1893  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号