首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compute and analyze the potential energy for the twenty-six lowest-lying states of Li2 which correspond asymptotically to the interaction of Li(2s2S) with Li(2s2S). Li(2p2P) or Li(3s2S), and the interaction Li(2p2P) with Li(2p2P) to obtain the leading terms of the first-order electrostatic energies, and the second-order dispersion energies. Ion-pair perturbations are found to dominate the potential curves of several states. The polarizabilities of Li 2s, 2p and 3s in various fields are calculated.  相似文献   

2.
Low‐cost, single‐step synthesis of hollow nanotubes of N‐doped carbon deposited on CoS is enabled by the simultaneous use of three functionalities of polyacrylonitrite (PAN) nanofibers: 1) a substrate for loading active materials, 2) a sacrificial template for creating hollow tubular structures, and 3) a precursor for in situ nitrogen doping. The N‐doped carbon in hollow tubes of CoS provides a high‐capacity anode of long cycle life for a rechargeable Li‐ion or Na‐ion battery cell that undergoes the conversion reaction 2 A++2 e?+CoS →Co+A2S with A=Li or Na.  相似文献   

3.
We report a facile in situ synthesis that utilizes readily accessible SiCl4 cross‐linking chemistry to create durable hybrid solid–electrolyte interphases (SEIs) on metal anodes. Such hybrid SEIs composed of Si‐interlinked OOCOR molecules that host LiCl salt exhibit fast charge‐transfer kinetics and as much as five‐times higher exchange current densities, in comparison to their spontaneously formed analogues. Electrochemical analysis and direct optical visualization of Li and Na deposition in symmetric Li/Li and Na/Na cells show that the hybrid SEI provides excellent morphological control at high current densities (3–5 mA cm?2) for Li and even for notoriously unstable Na metal anodes. The fast interfacial transport attributes of the SEI are also found to be beneficial for Li‐S cells and stable electrochemical cycling was achieved in galvanostatic studies at rates as high as 2 C. Our work therefore provides a promising approach towards rational design of multifunctional, elastic SEIs that overcome the most serious limitations of spontaneously formed interphases on high‐capacity metal anodes.  相似文献   

4.
Compositional effects on the charge‐transport properties of electrolytes for batteries based on room‐temperature ionic liquids (RTILs) are well‐known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure. The focus has been placed on the effect of adding either Na+ or Li+ to 1‐methyl‐1‐butyl‐pyrrolidinium [C4PYR]+ bis(trifluoromethanesulfonyl)imide [Tf2N]?. Radial distribution functions show excellent agreement between MD and AIMD, which ensures the validity of the force fields used in the MD. This is corroborated by the MD results for the density, the diffusion coefficients, and the total conductivity of the electrolytes, which reproduce remarkably well the experimental observations for all studied Na/Li concentrations. By extracting partial conductivities, it is demonstrated that the main contribution to the conductivity is that of [C4PYR]+ and [Tf2N]?. However, addition of Na+/Li+, although not significant on its own, produces a dramatic decrease in the partial conductivities of the RTIL ions. The origin of this indirect effect can be traced to the modification of the microscopic structure of the liquid as observed from the radial distribution functions, owing to the formation of [Na(Tf2N)n](n?1)? and [Li(Tf2N)n](n?1)? clusters at high concentrations. This formation hinders the motion of the large ions, hence reducing the total conductivity. We demonstrate that this clustering effect is common to both Li and Na, showing that both ions behave in a similar manner at a microscopic level in spite of their distinct ionic radii. This is an interesting finding for extending Li‐ion and Li‐air technologies to their potentially cheaper Na‐based counterparts.  相似文献   

5.
The splitting of the T2 stretching vibration into B2 and E modes on passing from Td to D2d symmetry is discussed for M2XO4 molecules (M = Li, Na, K, Cs, In and T1. X = Cr, Mo, W and S). Correlations between XO stretching force constants, OXO bond angles and cation polarizabilities are made.  相似文献   

6.
Mechanisms of retinol (ROL) transport in plasma alternative to that involving the Retinol‐Binding Protein (RBP) have been hypothesized after RBP‐knockout mice were shown to be viable and fertile. Accordingly, the possibility of a ROL fraction circulating free in plasma has been suggested. In this study, stable complex formation between ROL and the physiological relevant ions Na+, Li+, and K+ was investigated by using mass spectrometry and assessed in regard to the aforementioned alternative mechanism. The ROL‐Na complex was found to be kinetically favoured with respect to the ROL‐Li and ROL‐K complexes. Fragmentation of the [ROL‐Na]+ adduct rendered the carbocation [ROL+H–H2O]+ (m/z 269) and NaOH as neutral loss. In consonance with these results, it is hypothesized on the possibility of the complex [ROL‐Na]+ being an alternative way of ROL transport to cells, as well as an intermediate in cis/trans isomerism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Sodium metal is an attractive anode for next‐generation energy storage systems owing to its high specific capacity, low cost, and high abundance. Nevertheless, uncontrolled Na dendrite growth caused by the formation of unstable solid electrolyte interphase (SEI) leads to poor cycling performance and severe safety concerns. Sodium polysulfide (Na2S6) alone is revealed to serve as a positive additive or pre‐passivation agent in ether electrolyte to improve the long‐term stability and reversibility of the Na anode, while Na2S6‐NaNO3 as co‐additive has an adverse effect, contrary to the prior findings in the lithium anode system. A superior cycling behavior of Na anode is first demonstrated at a current density up to 10 mA cm?2 and a capacity up to 5 mAh cm?2 over 100 cycles. As a proof of concept, a high‐capacity Na‐S battery was prepared by pre‐passivating the Na anode with Na2S6. This study gives insights into understanding the differences between Li and Na systems.  相似文献   

8.
The lithium salts of the chalcogenocarbonyl dianions [(E)C(PPh2S)2]2? (E=S ( 4 b ), Se ( 4 c )) were produced through the reactions between Li2[C(PPh2S)2] and elemental chalcogens in the presence of tetramethylethylenediamine (TMEDA). The solid‐state structure of {[Li(TMEDA)]2[(Se)C(PPh2S)2]}—[{Li(TMEDA)}2 4 c ]—was shown to be bicyclic with the Li+ cations bis‐S,Se‐chelated by the dianionic ligand. One‐electron oxidation of the dianions 4 b and 4 c with iodine afforded the diamagnetic complexes {[Li(TMEDA)]2[(SPh2P)2CEEC(PPh2S)2]} ([Li(TMEDA)]2 7 b (E=S), [Li(TMEDA)]2 7 c (E=Se)), which are formally dimers of the radical anions [(E)C(PPh2S)2]? . (E=S ( 5 b ), Se ( 5 c )) with elongated central E? E bonds. Two‐electron oxidation of the selenium‐containing dianion 4 c with I2 yielded the LiI adduct of a neutral selone {[Li(TMEDA)][I(Se)C(PPh2S)2]}—[{LiI(TMEDA)} 6 c ]—whereas the analogous reaction with 4 b resulted in the formation of 7 b followed by protonation to give {[Li(TMEDA)][(SPh2P)2CSS(H)C(PPh2S)2]}—[Li(TMEDA)] 8 b . Attempts to identify the transient radicals 5 b and 5 c by EPR spectroscopy in conjunction with DFT calculations of the electronic structures of these paramagnetic species and their dimers are also described. The crystal structures of [{Li(TMEDA)}2 4 c ], [{LiI(TMEDA)} 6 c ] ? C7H8, [Li(TMEDA)]2 7 b? (CH2Cl2)0.33, [Li(THF)2]2 7 b , [Li(TMEDA)]2 7 c , [Li(TMEDA)] 8 b? (CH2Cl2)2 and [Li([12]crown‐4)2] 8 b were determined and salient structural features are discussed.  相似文献   

9.
Aqueous Na‐ or K‐ion batteries could virtually eliminate the safety and cost concerns raised from Li‐ion batteries, but their widespread applications have generally suffered from narrow electrochemical potential window (ca. 1.23 V) of aqueous electrolytes that leads to low energy density. Herein, by exploring optimized eutectic systems of Na and K salts with asymmetric imide anions, we discovered, for the first time, room‐temperature hydrate melts for Na and K systems, which are the second and third alkali metal hydrate melts reported since the first discovery of Li hydrate melt by our group in 2016. The newly discovered Na‐ and K‐ hydrate melts could significantly extend the potential window up to 2.7 and 2.5 V (at Pt electrode), respectively, owing to the merit that almost all water molecules participate in the Na+ or K+ hydration shells. As a proof‐of‐concept, a prototype Na3V2(PO4)2F3|NaTi2(PO4)3 aqueous Na‐ion full‐cell with the Na‐hydrate‐melt electrolyte delivers an average discharge voltage of 1.75 V, that is among the highest value ever reported for all aqueous Na‐ion batteries.  相似文献   

10.
This paper describes a quantitative measurement of trace elements (Na, Li) in high purity zirconium dioxide powder using liquid electrode plasma optical emission spectrometry (LEP-OES). Conventionally, for such type of measurements, inductively coupled plasma optical emission spectrometry (ICP-OES) is frequently employed. The detection limits of elements in zirconium by ICP-OES are degraded due to the spectra interference between the trace elements and zirconium of the matrix, because zirconium is a line rich element in spectra obtained by ICP-OES. LEP-OES is an elemental analysis method developed by the authors. The measurement principle is simple, as follows. Sample solution is put into a narrow channel on a small cuvette and voltage pulse is applied from both ends of the channel. At the center of the channel which is made narrower, the voltage and current are concentrated there, and plasma is generated. From the emission of the plasma, the quantitative analysis of the elements in the solution is achieved. The LEP-OES has the property that the emission of zirconium is relatively weak, so that highly sensitive measurement of trace elements in zirconium matrix can be conducted without interference. Sample solution is prepared by dissolving high purity zirconium dioxide powder and trace amounts of Na or Li with sulfuric acid. The voltage dependence and the pulse width dependence of optical emission spectra are also investigated. With increase of the voltage or the pulse width, the ratio of emission intensities of Na to those of hydrogen increases. This suggests that the ratio of sensitivity of two elements is variable, that means the element selectivity is controllable to some extent by the measurement conditions in LEP-OES. In the case of Na and H, the ratio can be controlled from 7.4 to 21.6%. Finally, the detection limits (3S.D.) of the trace elements, Na and Li, in 4000 μg g−1 zirconium dioxide aqueous solution are found to be 0.02 and 0.133 μg g−1, respectively. These values correspond to 5 μg g−1 for Na, 33.25 μg g−1 for Li in original high purity zirconium dioxide powder. The correlation coefficient of calibration curve was 0.995 for Na, 0.985 for Li. Those are comparable to the literature values of detection limits using ICP-OES.  相似文献   

11.
This article reports state‐of‐the‐art ab initio calculations at the second order of Møller‐Plesset perturbation theory of molecular hydrogen binding in its ternary complexes with lightweight alkali cations (M = Li or Na) and polycyclic aromatic hydrocarbons (PAHs) up to coronene. The study revealed a substantial nonadditive contribution to the H2 stabilization energy. In the most stable conformation, the nonadditive contribution weakens the H2 binding by a factor of nearly 1.5 and 1.3 for Li and Na cations, respectively, as compared with the pairwise sum of direct H2–M+ and H2–PAH contributions. In the Li case, the presence of PAH not only does not promote H2 binding but has a large (~20%) weakening effect in comparison with the initial H2–Li+ interaction. In the Na case, the presence of PAH has the usual stabilizing influence on the hydrogen binding. A careful analysis of the physical components of the nonadditive effect on the example of H2–M+–benzene complexes revealed the dominating role of the induction nonadditivity. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008  相似文献   

12.
We report the electrochemistry of a hitherto unexplored Na2MoS4 phase as a conversion electrode material for Na‐ and Li‐ion batteries. The material adopts an amorphous coordination polymer structure with mixed Mo and S valences. XPS and XRD analysis reveal a complex interplay between Mo and S redox chemistry, while excluding the formation of free sulfur, lithium sulfide, or other crystalline phases. Na2MoS4 behaves as a mixed ionic–electronic conductor, with electronic conductivity of 6.1×10?4 S cm?1, that permits carbon‐free application in an electrochemical cell. A reversible capacity of up to 500 mAh g?1 was attained, corresponding to a five‐electron redox exchange, with species ranging from <Na<1MoS4> (highest oxidized state) to <Na>5MoS4> (lowest oxidized state). This study emphasizes the excellent charge‐storage performances of Na2MoS4 for Li‐ or Na‐ion batteries, and enriches the emerging library and knowledge of sulfide phases with mixed anionic and cationic redox properties.  相似文献   

13.
X‐ray crystal structure analysis of the lithiated allylic α‐sulfonyl carbanions [CH2?CHC(Me)SO2Ph]Li ? diglyme, [cC6H8SO2tBu]Li ? PMDETA and [cC7H10SO2tBu]Li ? PMDETA showed dimeric and monomeric CIPs, having nearly planar anionic C atoms, only O?Li bonds, almost planar allylic units with strong C?C bond length alternation and the s‐trans conformation around C1?C2. They adopt a C1?S conformation, which is similar to the one generally found for alkyl and aryl substituted α‐sulfonyl carbanions. Cryoscopy of [EtCH?CHC(Et)SO2tBu]Li in THF at 164 K revealed an equilibrium between monomers and dimers in a ratio of 83:17, which is similar to the one found by low temperature NMR spectroscopy. According to NMR spectroscopy the lone‐pair orbital at C1 strongly interacts with the C?C double bond. Low temperature 6Li,1H NOE experiments of [EtCH?CHC(Et)SO2tBu]Li in THF point to an equilibrium between monomeric CIPs having only O?Li bonds and CIPs having both O?Li and C1?Li bonds. Ab initio calculation of [MeCH?CHC(Me)SO2Me]Li ? (Me2O)2 gave three isomeric CIPs having the s‐trans conformation and three isomeric CIPs having the s‐cis conformation around the C1?C2 bond. All s‐trans isomers are more stable than the s‐cis isomers. At all levels of theory the s‐trans isomer having O?Li and C1?Li bonds is the most stable one followed by the isomer which has two O?Li bonds. The allylic unit of the C,O,Li isomer shows strong bond length alternation and the C1 atom is in contrast to the O,Li isomer significantly pyramidalized. According to NBO analysis of the s‐trans and s‐cis isomers, the interaction of the lone pair at C1 with the π* orbital of the CC double bond is energetically much more favorable than that with the “empty” orbitals at the Li atom. The C1?S and C1?C2 conformations are determined by the stereoelectronic effects nC–σSR* interaction and allylic conjugation. 1H DNMR spectroscopy of racemic [EtCH?CHC(Et)SO2tBu]Li, [iPrCH?CHC(iPr)SO2tBu]Li and [EtCH?C(Me)C(Et)SO2tBu]Li in [D8]THF gave estimated barriers of enantiomerization of ΔG=13.2 kcal mol?1 (270 K), 14.2 kcal mol?1 (291 K) and 14.2 kcal mol?1 (295 K), respectively. Deprotonation of sulfone (R)‐EtCH?CHCH(Et)SO2tBu (94 % ee) with nBuLi in THF at ?105 °C occurred with a calculated enantioselectivity of 93 % ee and gave carbanion (M)‐[EtCH?CHC(Et)SO2tBu]Li, the deuteration and alkylation of which with CF3CO2D and MeOCH2I, respectively, proceeded with high enantioselectivities. Time‐dependent deuteration of the enantioenriched carbanion (M)‐[EtCH?CHC(Et)SO2tBu]Li in THF gave a racemization barrier of ΔG=12.5 kcal mol?1 (168 K), which translates to a calculated half‐time of racemization of t1/2=12 min at ?105 °C.  相似文献   

14.
Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long‐cycle‐life lithium–sulfur (Li–S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K‐edge X‐ray absorption near‐edge structure (XANES) and 6,7Li magic‐angle spinning (MAS) NMR studies on a Li–S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all‐sulfur‐based components in the Li–S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using 7Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li–S batteries.  相似文献   

15.
Reactions of 1,3-diisopropylcarbodiimide with alkali metal amides, MN(SiMe3)2 (M=Li or Na) in hexane or THF produced the alkali metal guanidinates { (i-PrN)2C [N(SiMe3)2]Li }2 (1) and { (i-PrN)2C[N(SiMe3)2]Na(THF) } 2 (2) in nearly quantitative yields. Both complexes 1 and 2 were well characterized by elemental analysis, IR spectra, ^1H and ^13C NMR spectra, and X-ray diffraction. It was found that the guanidinates adopt different coordination modes in these complexes.  相似文献   

16.
The cathodic reactions in Li–S batteries can be divided into two steps. Firstly, elemental sulfur is transformed into long‐chain polysulfides (S8?Li2S4), which are highly soluble in the electrolyte. Next, long‐chain polysulfides undergo nucleation reaction and convert into solid‐state Li2S2 and Li2S (Li2S4?Li2S) by slow processes. As a result, the second‐step of the electrochemical reaction hinders the high‐rate application of Li–S batteries. In this report, the kinetics of the sulfur/long‐chain‐polysulfide redox couple (theoretical capacity=419 mA h g?1) are experimentally demonstrated to be very fast in the Li–S system. A Li–S cell with a blended carbon interlayer retains excellent cycle stability and possesses a high percentage of active material utilization over 250 cycles at high C rates. The meso‐/micropores in the interlayer are responsible for accommodating the shuttling polysulfides and offering sufficient electrolyte accessibility. Therefore, utilizing the sulfur/long‐chain polysulfide redox couple with an efficient interlayer configuration in Li–S batteries may be a promising choice for high‐power applications.  相似文献   

17.
Bonding mechanisms, potential energy curves, accurate structures, energetics, and electron affinities are obtained for all M(CX)1–3 species with M = Li, Na, and X = O, S, Se, Te, and Po, at the coupled-cluster level with triple-ζ quality basis sets. We discuss and rationalize the trends within different molecular groups. For example, we found larger binding energies for M = Li, for CX = CPo, and for the tri-coordinated (n = 3) complexes. All three facts are explained by the fact that the global minimum of the titled complexes originate from the first excited 2P (2p1 for Li or 3p1 for Na) state of the metal, with each ligand forming a dative bond with the metal. All of the complexes, except Na(CO)3, have stable anions, and their electron affinity increases as MCX < M(CX)3 < M(CX)2. This sequence is attributed to the binding modes of these complexes. The Li(CO)3 and Li(CS)3 complexes are able to accommodate a fourth ligand, which is attached to the system electrostatically. Finally, two Li(CO)3 molecules can bind together covalently to make the ethane analog. The staggered conformer was found lower in energy and unlike ethane the CO ligands bend toward the neighboring Li(CO)3 moiety. © 2019 Wiley Periodicals, Inc.  相似文献   

18.
Lithium–sulfur (Li–S) batteries have shown great potential as high energy‐storage devices. However, the stability of the Li metal anode is still a major concern. This is due to the formation of lithium dendrites and severe side reactions with polysulfide intermediates. We herein develop an anode protection method by coating a Nafion/TiO2 composite layer on the Li anode to solve these problems. In this architecture, Nafion suppresses the growth of Li dendrites, protects the Li anode, and prevents side reactions between polysulfides and the Li anode. Moreover, doped TiO2 further improves the ionic conductivity and mechanical properties of the Nafion membrane. Li–S batteries with a Nafion/TiO2‐coated Li anode exhibit better cycling stability (776 mA h g?1 after 100 cycles at 0.2 C, 1 C=1672 mA g?1) and higher rate performance (787 mA h g?1 at 2 C) than those with a pristine Li anode. This work provides an alternative way to construct stable Li anodes for high‐performance Li–S batteries.  相似文献   

19.
A novel single lithium‐ion (Li‐ion) conducting polymer electrolyte is presented that is composed of the lithium salt of a polyanion, poly[(4‐styrenesulfonyl)(trifluoromethyl(S‐trifluoromethylsulfonylimino)sulfonyl)imide] (PSsTFSI?), and high‐molecular‐weight poly(ethylene oxide) (PEO). The neat LiPSsTFSI ionomer displays a low glass‐transition temperature (44.3 °C; that is, strongly plasticizing effect). The complex of LiPSsTFSI/PEO exhibits a high Li‐ion transference number (tLi+=0.91) and is thermally stable up to 300 °C. Meanwhile, it exhibits a Li‐ion conductivity as high as 1.35×10?4 S cm?1 at 90 °C, which is comparable to that for the classic ambipolar LiTFSI/PEO SPEs at the same temperature. These outstanding properties of the LiPSsTFSI/PEO blended polymer electrolyte would make it promising as solid polymer electrolytes for Li batteries.  相似文献   

20.
Graphene‐like and platelike WS2 were obtained by solid‐state reactions. High‐resolution (HR) TEM, BET, and Raman scattering studies show that the graphene‐like WS2 is a few‐layer‐structured material. It exhibits better electrochemical performances than the platelike WS2. Structural characterization indicates that metallic W and Li2S are the end products of discharge (0.01 V versus Li+/Li), whereas metallic W and S are the recharge (3.00 V) products. In addition, X‐ray absorption near‐edge structure (XANES) characterization shows that the d electrons of W deviate towards the Li (or S) atom during the discharge/charge process, thus forming a weak bond between W and Li2S (or S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号