首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
CO2‐switchable polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(butyl methacrylate) (PBMA) latexes were prepared via surfactant‐free emulsion polymerization (SFEP) under a CO2 atmosphere, employing N‐[3‐(dimethylamino)propyl]methacrylamide (DMAPMAm) as a CO2‐switchable, water‐soluble, and hydrolytically stable comonomer. The conversion of the SFEP of styrene reaches >95% in less than 5 h. The resulting latexes have near monodisperse particles (PDI ≤ 0.05), as confirmed by DLS and TEM. The latexes could be destabilized by bubbling nitrogen (N2) and heating at 65 °C for 30 min, and easily redispersed by only bubbling CO2 for a short time without using sonication. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1059–1066  相似文献   

2.
Expanding on our strategy to synthesize aromatic step‐growth polymers containing pendant clickable azido groups via functional monomer approach, we have now designed and synthesized a new cardo bisphenol, viz., 2‐(2‐azidoethyl)‐3, 3‐bis(4‐hydroxyphenyl) isoindolin‐1‐one (PPH‐N3). PPH‐N3 was conveniently synthesized starting from commercially available phenolphthalein by a three‐step route in an overall yield of 65% using simple organic transformations. Aromatic (co)polyesters bearing pendant azido groups were synthesized by low‐temperature solution polycondensation of PPH‐N3 or different molar ratios of PPH‐N3 and bisphenol‐A (BPA) with aromatic diacid chlorides in dry dichloromethane in the presence of triethylamine (TEA) as a base. The formation of medium to reasonably high‐molecular‐weight (co)polyesters was evidenced from intrinsic viscosity and number‐average molecular‐weight measurements that were in the range 0.52–0.85 dL/g and 16,700–28,200, respectively. Tough, transparent, and flexible films could be cast from chloroform solutions of these (co)polyesters. (Co)polyesters were characterized using FTIR, 1H NMR, 13C NMR spectroscopy, XRD, and TGA. The thermal curing reaction of (co)polyesters involving decomposition of azido groups was studied by DSC analysis. The chemical modification of a representative copolyester containing pendant azido groups was carried out quantitatively using catalyst‐free azide‐maleimide cycloaddition reaction with two maleimides, namely, N‐methylmaleimide and N‐hexylmaleimide. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1516–1526  相似文献   

3.
New fluorinated aromatic polyimides were prepared from 1,4‐(4′‐aminophenoxy)‐2‐(3′‐trifluoromethylphenyl)benzene and aromatic dianhydrides via the polycondensation of one‐step high‐temperature and two‐step thermal or chemical imidization methods. Experimental results indicated that some of the polyimides were soluble both in strong dipolar solvents (N‐methyl‐2‐pyrrolidone or N,N‐dimethylacetamide) and in common organic solvents such as tetrahydrofuran, CHCl3, and acetone. The polyimides showed exceptional thermal and thermooxidative stability and good mechanical properties. No weight loss was detected before a temperature of 520 °C in nitrogen, and the glass‐transition temperatures ranged from 208 to 251 °C. Low dielectric constants (2.55–2.71 at 1 MHz), low refractive indices, and low water absorption were also observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2404–2413, 2001  相似文献   

4.
The phase‐transfer catalyzed polycondensation of α,α′‐dichloro‐p‐xylene with 4,4′‐isopropylidenediphenol was carried out using benzylethylammonium chloride in a two‐phase system of an aqueous alkaline solution and benzene at 60 °C under nitrogen atmosphere. The rate of polycondensation was expressed as the combined terms of quaternary onium cation and 4,4′‐isopropylidenediphenolate anion rather than the feed concentration of catalyst and 4,4′‐isopropylidenediphenol. The measured concentrations of hydroxide and chloride anion in the aqueous solution and α,α′‐dichloro‐p‐xylene in the organic phase were used to obtain the reaction rate constant with the integral method, and to analyze the polycondensation mechanism with a cyclic phase‐transfer initiation step in the heterogeneous liquid–liquid system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3059–3066, 2000  相似文献   

5.
Poly(L ‐lactic acid) (PLLA) is generally produced by ring‐opening polymerization of (S,S)‐lactide, which is prepared from dehydration polycondensation of lactic acid and successive depolymerization. Results of this study show that scandium trifluoromethanesulfonate [Sc(OTf)3] and scandium trifluoromethanesulfonimide [Sc(NTf2)3] are effective for one‐step dehydration polycondensation of L ‐lactic acid. Bulk polycondensation of L ‐lactic acid was carried out at 130–170 °C to give PLLA with Mn of 5.1 × 104 to 7.3 × 104 (yield 32–60%). The solution polycondensation was performed at 135 °C for 48 h to afford PLLA with Mn of 1.1 × 104 with good yield (90%). In no case did 1H NMR, specific optical rotation, or DSC measurement confirm racemizations. The catalyst was recovered easily by extraction with water and reused for polycondensation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5247–5253, 2006  相似文献   

6.
N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine was synthesized from N‐(4‐nitrophenyl)‐diphenylamine by the Vilsmeier‐Haack reaction. Soluble aromatic poly(azomethine)s (PAMs) were prepared by the solution polycondensation of N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine and aromatic diamine in N‐methyl‐2‐pyrrolidone (NMP) at room temperature under reduced pressure. All the PAMs are highly soluble in various organic solvents, such as N,N‐dimethylacetamide (DMAc), chloroform (CHCl3), and tetrahydrofuran (THF). Differential scanning calorimetry (DSC) indicated that these PAMs had glass‐transition temperatures (Tgs) in the range of 170–230 °C, and a 10% weight‐loss temperatures in excess of 490 °C with char yield at 800 °C in nitrogen higher than 60%. These PAMs in NMP solution showed UV‐Vis charge‐transfer (CT) absorption at 405–421 nm and photoluminescence peaks around 462–466 nm with fluorescence quantum efficiency (ΦF) 0.10–0.99%. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of these PAMs can be determined from cyclic voltammograms as 4.86–5.43 and 3.31–3.34 eV, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4921–4932, 2007  相似文献   

7.
Well‐defined linear furan‐protected maleimide‐terminated poly(ethylene glycol) (PEG‐MI), tetramethylpiperidine‐1‐oxyl‐terminated poly(ε‐caprolactone) (PCL‐TEMPO), and azide‐terminated polystyrene (PS‐N3) or ‐poly(N‐butyl oxanorbornene imide) (PONB‐N3) were ligated to an orthogonally functionalized core ( 1 ) in a two‐step reaction mode through triple click reactions. In a first step, Diels–Alder click reaction of PEG‐MI with 1 was performed in toluene at 110 °C for 24 h to afford α‐alkyne‐α‐bromide‐terminated PEG (PEG‐alkyne/Br). As a second step, this precursor was subsequently ligated with the PCL‐TEMPO and PS‐N3 or PONB‐N3 in N,N‐dimethylformamide at room temperature for 12 h catalyzed by Cu(0)/Cu(I) through copper‐catalyzed azide‐alkyne cycloaddition and nitroxide radical coupling click reactions, yield resulting ABC miktoarm star polymers in a one‐pot mode. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
End‐group modified hyperbranched polyetherimides were prepared by a one‐pot, two‐step reaction sequence. General synthetic techniques were developed to prepare both monofunctional terminating segments and the corresponding modified polyetherimide hyperbranched polymers. Monofunctional groups were used to terminate an AB2‐type polycondensation reaction, generating capped hyperbranched polymers (HBPs). The composition and constitution of the end groups controlled the solubility and thermal properties of the HBPs. For the same polymer backbone, different end groups were able to shift the glass‐transition temperature nearly 100 °C. End‐group modification greatly influenced the film‐forming ability of the HBPs. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 936–946, 2002  相似文献   

9.
Poly(benzobisthiazole)s containing tetrafluorophenyl and bromophenyl moieties were synthesized via the polycondensation of 2,5‐diamino‐1,4‐benzenedithiol dihydrochloride with tetrafluorophthalic acid and 4‐bromoisophthalic acid under a nitrogen atmosphere. The polymers were characterized by X‐ray diffraction, spectroscopy (infrared and solid‐state 13C NMR), and thermal analysis, including differential scanning calorimetry and thermogravimetric analysis. The thermogravimetric analysis showed that the thermal stability of the polymers was 490–515 °C under a nitrogen atmosphere. The synthesized polymers showed good solubility in organic solvents. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3959–3966, 2002  相似文献   

10.
A new kind of 1,2,3‐triazole‐containing aromatic diamines were synthesized by the Cu(I)‐catalyzed 1,3‐dipolar cycloaddition reaction. These diamines were employed to synthesize a series of novel polytriazoleimides (PTAIs) by polycondensation with various aromatic dianhydrides in N,N‐dimethylacetamide (DMAc) via the conventional two‐step method. The obtained polyimides were characterized by Fourier transform infrared, hydrogen‐1 nuclear magnetic resonance, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis techniques. The results show that the PTAIs are soluble in most of strong polar solvents and have inherent viscosity values of 0.47–0.68 dl/g (DMAc). PTAI films have tensile strengths of 60.6–102.6 MPa and elongations at breakage of 3.0–4.1%, glass transition temperatures (Tg) of 208–262°C, and decomposition temperatures (at 5% weight loss) of 368–401°C in N2 atmosphere, which depend on the structure of the polymers. The PTAIs also exhibit good adhesion to copper and gas separation properties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
A polyurethane bearing methacrylate groups through urethane linkages was prepared by the addition of 2‐methacryloyloxyethyl isocyanate to the hydroxyl groups in poly(hydroxyurethane) prepared by the polyaddition of a bifunctional cyclic carbonate with 1,12‐diaminododecane. The urethanization proceeded quantitatively in the presence of a catalytic amount of di‐n‐butyltin dilaurate at an ambient temperature, whereas a crosslinked product was obtained from the reaction at 60 °C. The resulting linear polyurethane, bearing a methacrylate structure, was thermally crosslinkable. Its radical copolymerization with vinyl‐type monomers afforded the corresponding crosslinked polymers, whose low glass transition temperatures suggested the flexibility of the polymer chains in the crosslinked product. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3400–3407, 2007  相似文献   

13.
The phase‐transfer catalyzed graft copolymerization of methyl methacrylate onto polychloroprene was carried out using tricaprylylmethylammonium chloride as a phase‐transfer catalyst in a two‐phase system of an aqueous Na2S2O8 solution and toluene at 55 °C under a nitrogen atmosphere. The initial rate of graft copolymerization was expressed as the combined terms of quaternary onium cation and peroxydisulfate anion in the aqueous phase rather than the fed concentrations of catalyst and Na2S2O8. The observed initial rate of graft copolymerization was used to analyze the graft copolymerization mechanism with a cycle phase‐transfer initiation step in the heterogeneous liquid–liquid system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3543–3549, 2000  相似文献   

14.
A series of novel polyamide‐imides III containing 2,6‐bis(phenoxy)naphthalene units were synthesized by 2,6‐bis(4‐aminophenoxy)naphthalene and various bis(trimellitimide)s in N‐methyl‐2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents through direct polycondensation. The polymers were obtained in quantitative yield with inherent viscosities up to 1.53 dL/g. Most of the polymers showed good solubility in NMP, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide and could be solution‐cast into transparent, flexible, and tough films. The films had tensile strengths of 84–111 MPa, elongations at break of 8–33%, and initial moduli of 2.2–2.8 GPa. Wide‐angle X‐ray diffraction revealed that most polymers III were amorphous. The glass‐transition temperatures of some of the polymers could be determined by differential scanning calorimetry traces, recorded at 247–290 °C. The polyamide‐imides exhibited excellent thermal stabilities and had 10% weight loss at temperatures in the range of 501–575 °C under nitrogen atmosphere. They left more than 57% residue even at 800 °C in nitrogen. A comparative study of some corresponding polyamide‐imides is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2591–2601, 2001  相似文献   

15.
A trifunctional initiator, 2‐phenyl‐2‐[(2,2,6,6‐tetramethyl)‐1‐piperidinyloxy] ethyl 2,2‐bis[methyl(2‐bromopropionato)] propionate, was synthesized and used for the synthesis of miktoarm star AB2 and miktoarm star block AB2C2 copolymers via a combination of stable free‐radical polymerization (SFRP) and atom transfer radical polymerization (ATRP) in a two‐step or three‐step reaction sequence, respectively. In the first step, a polystyrene (PSt) macroinitiator with dual ω‐bromo functionality was obtained by SFRP of styrene (St) in bulk at 125 °C. Next, this PSt precursor was used as a macroinitiator for ATRP of tert‐butyl acrylate (tBA) in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 80 °C, affording miktoarm star (PSt)(PtBA)2 [where PtBA is poly(tert‐butyl acrylate)]. In the third step, the obtained St(tBA)2 macroinitiator with two terminal bromine groups was further polymerized with methyl methacrylate by ATRP, and this resulted in (PSt)(PtBA)2(PMMA)2‐type miktoarm star block copolymer [where PMMA is poly(methyl methacrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.38). All polymers were characterized by gel permeation chromatography and 1H NMR. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2542–2548, 2003  相似文献   

16.
Two novel poly(amine‐hydrazide)s were prepared from the polycondensation reactions of the dicarboxylic acid, 9‐[N,N‐di(4‐carboxyphenyl)amino]anthracene ( 1 ), with terephthalic dihydrazide ( TPH ) and isophthalic dihydrazide ( IPH ) via the Yamazaki phosphorylation reaction, respectively. The poly(amine‐hydrazide)s were readily soluble in many common organic solvents and could be solution cast into transparent films. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass‐transition temperatures (Tg) in the range of 182–230 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s had useful levels of thermal stability associated with high Tg (263–318 °C), 10% weight‐loss temperatures in excess of 500 °C, and char yield at 800 °C in nitrogen higher than 55%. These organo‐soluble anthrylamine‐based poly(amine‐hydrazide)s and poly (amine‐1,3,4‐oxadiazole)s exhibited maximum UV‐vis absorption at 346–349 and 379–388 nm in N‐methyl‐2‐pyrrolidone (NMP) solution, respectively. Their photoluminescence spectra in NMP solution showed maximum bands around 490–497 nm in the green region. The poly(amine‐hydrazide) I ‐ IPH showed a green photoluminescence at 490 nm with PL quantum yield of 29.9% and 17.0% in NMP solution and film state, respectively. The anthrylamine‐based poly(amine‐1,3,4‐oxadiazole)s revealed a electrochromic characteristics with changing color from the pale yellow neutral form to the red reduced form when scanning potentials negatively from 0.00 to ?2.20 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1584–1594, 2009  相似文献   

17.
The polymerization conditions for polystyrene and poly(methyl methacrylate) crosslinked by 0.5 mol % of the cluster Zr6O4(OH)4(methacrylate)12 were optimized by applying a step polymerization procedure. The onset of thermal decomposition was thus increased up to about 50° for polystyrene and about 110° for poly(methyl methacrylate). The increase in thermal stability correlated with a higher char yield. The glass transition temperatures were also increased by about 15°. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6586–6591, 2005  相似文献   

18.
For the synthesis of polyethers with a variety of keto side chains in a one‐step reaction, the three‐component polycondensation of dialdehydes, diol disilyl ethers, and silyl enol ethers of ketones was investigated. The method of monomer addition strongly affected the molecular weight of polymers and was optimized to yield high molecular weight polymers by model reactions. A variety of dialdehydes, diol disilyl ethers, and silyl enol ethers were polymerized in the presence of a catalytic amount of triphenylmethyl (trityl) perchlorate in CH2Cl2 at −78 °C according to the method of monomer addition. This polymer synthesis was unusual in that it concurrently constructed both the polyether backbone and the keto side chains from three starting compounds. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 179–188, 2000  相似文献   

19.
A series of novel aromatic diamines ( 2 – 4 ) containing the alkyl‐, aryl, or chloro‐substituted group of phthalazinone segments were synthesized via two synthetic steps starting from 4‐(3‐R‐4‐hydroxyphenyl)‐2,3‐phthalazinone‐1 (R = Ph, CH3, Cl). Three series of aromatic polyamides containing phthalazinone moieties were prepared through diamines 2 – 4 reacting with different aromatic dicarboxylic acids via a direct Yamazaki–Higashi phosphorylation polycondensation reaction. The resulting aromatic polyamides had inherent viscosities in the range of 0.40–0.76 dL/g. The thermal property of the polyamides was examined with DSC and thermogravimetric analysis. The glass‐transition temperatures of these polyamides ranged from 298 to 340 °C. The 10% mass‐loss temperature was above 405 °C under nitrogen. Structures of monomers 2 – 4 and the polymers were confirmed by Fourier transform infrared spectroscopy, 1H NMR, and mass spectrometry. Good solubility of these polymers in polar solvents such as N‐methylpyrrolidone, dimethylformamide, dimethylacetamide (DMAc), and m‐cresol was observed, and tough, flexible films were obtained from the polymer's DMAc solutions. The effect of the substituted group on the physical property of polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2026–2030, 2004  相似文献   

20.
A novel, trifluoromethyl‐substituted, bis(ether amine) monomer, 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)naphthalene, was synthesized through the nucleophilic displacement of 2‐chloro‐5‐nitrobenzotrifluoride with 1,4‐dihydroxynaphthalene in the presence of potassium carbonate in dimethyl sulfoxide, followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new fluorine‐containing polyimides with inherent viscosities of 0.57–0.91 dL/g were prepared by reacting the diamine with six commercially available aromatic dianhydrides via a conventional, two‐step thermal or chemical imidization method. Most of the resulting polyimides were soluble in strong polar solvents such as N‐methylpyrrolidone and N,N‐dimethylacetamide (DMAc). All the polyimides afforded transparent, flexible, and strong films with good tensile properties. These polyimides exhibited glass‐transition temperatures (Tg's) (by DSC) and softening temperatures (by thermomechanical analysis) in the ranges of 252–315 and 254–301 °C, respectively. Decomposition temperatures for 5% weight loss all occurred above 500 °C in both air and nitrogen atmospheres. The dielectric constants of these polyimides ranged from 3.03 to 3.71 at 1 MHz. In addition, a series of new, fluorinated polyamides with inherent viscosities of 0.32–0.62 dL/g were prepared by the direct polycondensation reaction the diamine with various aromatic dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides were soluble in polar solvents such as DMAc and could be solution‐cast into tough and flexible films. These polyamides had Tg's between 228 and 256 °C and 10% weight‐loss temperatures above 400 °C in nitrogen or air. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2377–2394, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号