首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Two new phenyl‐ and naphthyl‐substituted rigid‐rod aromatic dicarboxylic acid monomers, 2,2′‐diphenylbiphenyl‐4,4′‐dicarboxylic acid ( 4 ) and 2,2′‐di(1‐naphthyl)biphenyl‐4,4′‐dicarboxylic acid ( 5 ), were synthesized by the Suzuki coupling reaction of 2,2′‐diiodobiphenyl‐4,4′‐dicarboxylic acid dimethyl ester with benzeneboronic acid and naphthaleneboronic acid, respectively, followed by alkaline hydrolysis of the ester groups. Four new polyhydrazides were prepared from the dicarboxylic acids 4 and 5 with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. These polyhydrazides were amorphous and readily soluble in many organic solvents. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass transition temperatures in the range of 187–234 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(1,3,4‐oxadiazole)s exhibited Tg's in the range of 252–283 °C, 10% weight‐loss temperature in excess of 470 °C, and char yield at 800 °C in nitrogen higher than 54%. These organo‐soluble polyhydrazides and poly(1,3,4‐oxadiazole)s exhibited UV–Vis absorption maximum at 262–296 and 264–342 nm in NMP solution, and their photoluminescence spectra showed maximum bands around 414–445 and 404–453 nm, respectively, with quantum yield up to 38%. The electron‐transporting properties were examined by electrochemical methods. Cyclic voltammograms of the poly(1,3,4‐oxadiazole) films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited reversible reduction redox with Eonset at ?1.37 to ?1.57 V versus Ag/AgCl in dry N,N‐dimethylformamide solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6466–6483, 2006  相似文献   

2.
We describe the preparation, characterization, and luminescence of four novel electrochromic aromatic poly(amine hydrazide)s containing main‐chain triphenylamine units with or without a para‐substituted N,N‐diphenylamino group on the pendent phenyl ring. These polymers were prepared from either 4,4′‐dicarboxy‐4″‐N,N‐diphenylaminotriphenylamine or 4,4′‐dicarboxytriphenylamine and the respective aromatic dihydrazide monomers via a direct phosphorylation polycondensation reaction. All the poly(amine hydrazide)s were amorphous and readily soluble in many common organic solvents and could be solution‐cast into transparent and flexible films with good mechanical properties. These poly(amine hydrazide)s exhibited strong ultraviolet–visible absorption bands at 346–348 nm in N‐methyl‐2‐pyrrolidone (NMP) solutions. Their photoluminescence spectra in NMP solutions or as cast films showed maximum bands around 508–544 and 448–487 nm in the green and blue region for the two series of polymers. The hole‐transporting and electrochromic properties were examined by electrochemical and spectroelectrochemical methods. All obtained poly(amine hydrazide)s and poly(amine‐1,3,4‐oxadiazole)s exhibited two reversible oxidation redox couples at 0.8 and 1.24 V vs. Ag/AgCl in acetonitrile solution and revealed excellent stability of electrochromic characteristics, changing color from original pale yellow to green and then to blue at electrode potentials of 0.87 and 1.24 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3245–3256, 2005  相似文献   

3.
4,4′‐(1,4‐Phenylenedioxy)dibenzoic acid as well as the 2‐methyl‐, 2‐tert‐butyl‐, or 2‐phenyl‐substituted derivatives of this dicarboxylic acid were synthesized in two main steps from p‐fluorobenzonitrile and hydroquinone or its methyl‐, tert‐butyl‐, or phenyl‐substituted derivatives. Polyhydrazides and poly(amide–hydrazide)s were prepared from these bis(ether benzoic acid)s or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, or p‐aminobenzoyl hydrazide by means of the phosphorylation reaction or low‐temperature solution polycondensation. Most of the hydrazide polymers and copolymers are amorphous and readily soluble in various polar solvents such as N‐methyl‐2‐pyrrolidone (NMP) and dimethyl sulfoxide. They could be solution‐cast into transparent, flexible, and tough films. These polyhydrazides and poly(amide–hydrazide)s had Tgs in the range of 167–237°C and could be thermally cyclodehydrated into the corresponding poly(1,3,4‐oxadiazole)s and poly(amide–1,3,4‐oxadiazole)s approximately in the region of 250–350°C, as evidenced by the DSC thermograms. All the tert‐butyl‐substituted oxadiazole polymers and those derived from isophthalic dihydrazide were organic soluble. The thermally converted oxadiazole polymers exhibited Tgs in the range of 208–243°C and did not show significant weight loss before 450°C either in nitrogen or in air. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1169–1181, 1999  相似文献   

4.
A series of new poly(imide‐hydrazide)s and poly(amide‐imide‐hydrazide)s were obtained by the direct polycondensation of N‐[p‐(or m‐)carboxyphenyl]trimellitimide (p‐ or m‐CPTMI) with terephthalic dihydrazide (TPH), isophthalic dihydrazide (IPH), and p‐aminobenzhydrazide (p‐ABH) by means of diphenyl phosphite and pyridine in the N‐methyl‐2‐pyrrolidone (NMP) solutions containing dissolved CaCl2. The resulting hydrazide‐containing polymers exhibited inherent viscosities in the 0.15–0.96 dL/g range. Except for that derived from p‐CPTMI with TPH or p‐ABH, the other hydrazide copolymers were readily soluble in polar solvents such as NMP and dimethyl sulfoxide (DMSO). As evidenced by X‐ray diffraction patterns, the hydrazide copolymer obtained from TPH showed a moderate level of crystallinity, whereas the others were amorphous in nature. Most of the amorphous hydrazide copolymers formed flexible and tough films by solvent casting. The amorphous hydrazide copolymers had glass‐transition temperatures (Tg) between 187 and 233 °C. All hydrazide copolymers could be thermally converted into the corresponding oxadiazole copolymers approximately in the region of 250–400 °C, as evidenced by the DSC thermograms. The oxadiazole copolymers showed a significantly decreased solubility when compared to their respective hydrazide precursors. They exhibited Tg's of 264–302 °C and did not show dramatic weight loss before 400 °C in air or nitrogen. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1599–1608, 2000  相似文献   

5.
Two new aromatic poly(amide‐hydrazide)s (PAHs)‐bearing electroactive pyrenylamine units in the backbone were prepared from the phosphorylation polycondensation reactions of N,N‐di(4‐carboxyphenyl)‐1‐aminopyrene ( 1 ) with p‐aminobenzoyl hydrazide (p‐ABH) and m‐aminobenzoyl hydrazide (m‐ABH), respectively. The PAHs could be further cyclodehydrated into the corresponding poly(amide‐1,3,4‐oxadiazole)s in the range of 300–400 °C in the solid film state. All the hydrazide and oxadiazole polymers were soluble in many polar organic solvents and could afford flexible and strong films via solution casting. The poly(amide‐1,3,4‐oxdiazole)s had high glass‐transition temperatures (294–309 °C) and high thermal stability (10% weight‐loss temperature in excess of 520 °C). The dilute solutions of all the hydrazide and oxadiazole polymers showed strong fluorescence with emission maxima around 457–459 nm in the blue region. Copolymers obtained from the polycondensation of equimolar mixture of diacid 1 and 4,4′‐oxydibenzoic acid with p‐ABH or m‐ABH exhibited a significantly increased fluorescence quantum efficiency in comparison with the homopolymers. Cyclic voltammetry results indicated that all the hydrazide and oxadiazole polymers exhibited an ambipolar (n‐ and p‐doping processes) and electrochromic behavior. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

6.
A series of new organosoluble poly(amine hydrazide)s were synthesized via the Yamazaki phosphorylation reaction and were solution‐cast into transparent films. Differential scanning calorimetry indicated that the hydrazide polymers could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s exhibited glass‐transition temperatures in the range of 276–297 °C, 10% weight loss temperatures in excess of 520 °C, and char yields at 800 °C in nitrogen higher than 67%. The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of these polymers prepared by the casting of polymer solutions onto an indium tin oxide coated glass substrate exhibited two reversible oxidative redox couples at 1.10–1.19 and 1.35–1.60 V versus Ag/AgCl in an acetonitrile solution, respectively. The poly(amine hydrazide)s revealed excellent stability of the electrochromic characteristics, changing color from the original pale yellow to green and then to blue. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 48–58, 2007  相似文献   

7.
A series of novel polyamides with pendent anthrylamine units were prepared via the direct phosphorylation polycondensation from various diamines and the anthrylamine‐based aromatic dicarboxylic acid, 9‐[N,N‐di(4‐carboxyphenyl)amino]anthracene (4). The aromatic polyamides had useful levels of thermal stability associated with relatively high softening temperatures (Ts) (290–300 °C), 10% weight‐loss temperatures (Td10) nearly in excess of 550 °C, and char yields at 800 °C in nitrogen higher than 60%. These aromatic polyamides I exhibited highly photoluminescence quantum yield in NMP solution ranges from 55% for Ia to 74% for Ie due to the introduction of anthrylamine chromophores. Cyclic voltammograms of the polyamide films cast onto an indium‐tin oxide (ITO)‐coated glass substrate exhibited one oxidation and reduction couples (Eonset) around 1.10 and ?1.50 V versus Ag/AgCl in acetonitrile (CH3CN) and DMF solutions, respectively. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7354–7368, 2008  相似文献   

8.
A series of phosphorus‐containing poly(1,3,4‐oxadiazole‐ester‐imide)s was prepared by polycondensation reaction of an aromatic dianhydride, namely 1,4‐[2‐(6‐oxido‐6H‐dibenz<c,e><1,2>oxaphosphorin‐6‐yl)]‐naphthalene‐bis(trimellitate)dianhydride, with different aromatic diamines containing 1,3,4‐oxadiazole ring. A solution imidization procedure was used to convert quantitatively the poly(amic acid) intermediates to the corresponding polyimides. The chemical structures of the monomers and polymers were confirmed by Fourier transform infrared, 1H NMR and 31P NMR spectroscopy. The polymers were easily soluble in polar solvents such as N‐methyl‐2‐pyrrolidone (NMP), N,N‐dimethylformamide and tetrahydrofuran. They exhibited good thermal properties having the decomposition temperature above 380°C and the glass transition temperature in the range of 201–232°C. Due to the presence of phosphorus the polymers gave high char yield in termogravimetric analysis, hence good flame retardant properties. Optical properties were analyzed in solution by using UV–vis and photoluminescence spectroscopy. Solutions of the polymers in NMP exhibited photoluminescence in the blue region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Polyhydrazides and poly(amide‐hydrazide)s were prepared from two ether‐sulfone‐dicarboxylic acids, 4,4′‐[sulfonylbis(1,4‐phenylene)dioxy]dibenzoic acid and 4,4′‐[sulfonylbis(2,6‐dimethyl‐1,4‐phenylene)dioxy]dibenzoic acid, or their diacyl chlorides with terephthalic dihydrazide, isophthalic dihydrazide, and p‐aminobenzhydrazide via a phosphorylation reaction or a low‐temperature solution polycondensation. All the hydrazide polymers were found to be amorphous according to X‐ray diffraction analysis. They were readily soluble in polar organic solvents such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide and could afford colorless, flexible, and tough films with good mechanical strengths via solvent casting. These hydrazide polymers exhibited glass‐transition temperatures of 149–207 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the solid state at elevated temperatures. Although the oxadiazole polymers showed a significantly decreased solubility with respect to their hydrazide prepolymers, some oxadiazole polymers were still organosoluble. The thermally converted oxadiazole polymers had glass‐transition temperatures of 217–255 °C and softening temperatures of 215–268 °C and did not show significant weight loss before 400 °C in nitrogen or air. For a comparative study, related sulfonyl polymers without the ether groups were also synthesized from 4,4′‐sulfonyldibenzoic acid and the hydrazide monomers by the same synthetic routes. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2271–2286, 2001  相似文献   

10.
Two flexible dicarboxylic acid monomers, 4,4′-[isopropylidenebis(1,4-phenylene)dioxy]dibenzoic acid ( 1 ) and 4,4′-[hexafluoroisopropylidenebis(1,4-phenylene)-dioxy]dibenzoic acid ( 3 ), were synthesized from readily available compounds in two steps in high yields. High molecular-weight polyhydrazides and poly(amide-hydra-zide)s were directly prepared from dicarboxylic acids 1 and 3 with terephthalic dihydrazide ( 5 ), isophthalic dihydrazide ( 6 ), and p-aminobenzhydrazide ( 7 ) by the phosphorylation reaction by means of diphenyl phosphite (DPP) and pyridine in N-methyl-2-pyrrolidone (NMP)/LiCl, or prepared from the diacyl chlorides of 1 and 3 with the hydrazide monomers 5–7 by the low-temperature solution polycondensation in NMP/LiCl. Less favorable results were obtained when using triphenyl phosphite (TPP) instead of DPP in the direct polycondensation reactions. Except for those derived from terephthalic dihydrazide, the resulting polyhydrazides and poly(amide-hydrazide)s could be cast into colorless, flexible, and tough films with good tensile strengths. All the hydrazide polymers and copolymers are amorphous in nature and are readily soluble in various polar solvents such as NMP and dimethyl sulfoxide (DMSO). Their Tgs were recorded in the range of 162–198°C and could be thermally cyclodehydrated into the corresponding polyoxadiazoles and poly(amide-oxadiazole)s approximately in the region of 300–380°C, as evidenced by the DSC thermograms. The oxadiazole polymers and copolymers showed a dramatically decreased solubility and higher Tg when compared to their respective hydrazide prepolymers. They exhibited Tgs of 190–216°C and were stable up to 450°C in air or nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1847–1854, 1998  相似文献   

11.
A series of novel poly(amine amide)s ( IIa – IIl ) with pendent N‐carbazolylphenyl units having inherent viscosities of 0.25–1.06 dL/g were prepared via direct phosphorylation polycondensation from various dicarboxylic acids and a carbazole‐based aromatic diamine. Except for poly(amine amide) IIc , derived from trans‐1,4‐cyclohexanedicarboxylic acid, all the other amorphous poly(amine amide)s were readily soluble in many polar solvents, such as N,N‐dimethylacetamide and N‐methyl‐2‐pyrrolidone (NMP), and could be cast into transparent and flexible films. The aromatic poly (amine amide)s had useful levels of thermal stability associated with relatively high glass‐transition temperatures (268–331 °C), 10% weight loss temperatures in excess of 540 °C, and char yields at 800 °C in nitrogen higher than 60%. These polymers exhibited maximum ultraviolet–visible absorption at 293–361 nm in NMP solutions. Their photoluminescence in NMP solutions exhibited fluorescence emission maxima around 362 and 448–499 nm for aromatic–aliphatic poly(amine amide)s IIa – IIc and aromatic poly (amine amide)s IId – IIl , respectively. The fluorescence quantum yield in NMP solutions ranged from 0.34% for IIj to 4.44% for IIa . The hole‐transporting and electrochromic properties were examined with electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine amide) films cast onto an indium tin oxide coated glass substrate exhibited reversible oxidation at 0.81 V and irreversible oxidation redox couples at 1.20 V versus Ag/AgCl in acetonitrile solutions, and they revealed excellent stability of the electrochromic characteristics, with a color change from yellow to green at applied potentials ranging from 0.00 to 1.05 V. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4108–4121, 2006  相似文献   

12.
N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine was synthesized from N‐(4‐nitrophenyl)‐diphenylamine by the Vilsmeier‐Haack reaction. Soluble aromatic poly(azomethine)s (PAMs) were prepared by the solution polycondensation of N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine and aromatic diamine in N‐methyl‐2‐pyrrolidone (NMP) at room temperature under reduced pressure. All the PAMs are highly soluble in various organic solvents, such as N,N‐dimethylacetamide (DMAc), chloroform (CHCl3), and tetrahydrofuran (THF). Differential scanning calorimetry (DSC) indicated that these PAMs had glass‐transition temperatures (Tgs) in the range of 170–230 °C, and a 10% weight‐loss temperatures in excess of 490 °C with char yield at 800 °C in nitrogen higher than 60%. These PAMs in NMP solution showed UV‐Vis charge‐transfer (CT) absorption at 405–421 nm and photoluminescence peaks around 462–466 nm with fluorescence quantum efficiency (ΦF) 0.10–0.99%. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of these PAMs can be determined from cyclic voltammograms as 4.86–5.43 and 3.31–3.34 eV, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4921–4932, 2007  相似文献   

13.
Fluorine‐containing poly(aryl ether 1,3,4‐ozadiazole)s were synthesized by the nucleophilic aromatic substitution reaction of 2,5‐bis(2,3,4,5,6‐pentafluorophenyl)‐1,3,4‐oxadiazole and various bisphenols in the presence of potassium carbonate. The polymerizations were carried out at 30 °C in 1‐methyl‐2‐pyrrolidinone to avoid the gelation caused by a crosslinking reaction at para and ortho carbons to the 1,3,4‐oxidiazole ring. The obtained polymers were all para‐connected linear structures. The obtained fluorine‐containing poly(aryl ether 1,3,4‐ozadiazole)s showed excellent solubility and afforded tough, transparent films by the solution‐casting method. They also exhibited a high glass transition temperature depending on the molecular structure, and the glass transition temperature could be controlled by the bisphenols in the range of 157–257 °C. They showed good thermal stability and excellent hydrophobicity due to the incorporation of the 2,3,5,6‐tetrafluoro‐1,4‐phenylene moiety. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2855–2866, 2007  相似文献   

14.
A series of new poly(amine-hydrazide)s I were prepared from the dicarboxylic acid 4,4′-dicarboxy-4″-methyltriphenylamine with terephthalic dihydrazide (TPH) and isophthalic dihydrazide (IPH), respectively, via the Yamazaki phosphorylation reaction. Polymers I were readily soluble in many common organic solvents, and could be solution cast into transparent, tough, and flexible films with good mechanical properties. Differential scanning calorimetry (DSC) indicated that the hydrazide polymers had Tg’s in the range of 222-223 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300-400 °C. The resulting poly(amine-1,3,4-oxadiazole)s II exhibited Tg’s in the range of 269-283 °C, 10% weight-loss temperatures in excess of 511 °C, and char yield at 800 °C in nitrogen higher than 63%. These poly(amine-hydrazide)s I exhibited strong UV-Vis absorption bands at 351-355 nm in NMP solution. Their photoluminescence spectra in NMP solution and film showed maximum bands around 459-461 nm in the blue region for I series. The hole-transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. Cyclic voltammograms of the poly(amine-hydrazide)s I prepared by casting polymer solution onto an indium-tin oxide (ITO)-coated glass substrate exhibited one reversible oxidation redox couples at 1.32-1.33 V vs. Ag/AgCl in acetonitrile solution. All obtained poly(amine-hydrazide)s I revealed excellent stability of electrochromic characteristics, changing color from original pale yellowish to blue.  相似文献   

15.
A new triphenylamine‐containing aromatic dicarboxylic acid, N,N′‐bis(4‐carboxyphenyl)‐N,N′‐diphenyl‐1,4‐phenylenediamine, was synthesized by the condensation of N,N′‐diphenyl‐1,4‐phenylenediamine with 4‐fluorobenzonitrile, followed by the alkaline hydrolysis of the intermediate dinitrile compound. A series of novel triphenylamine‐based aromatic poly(amine amide)s with inherent viscosities of 0.50–1.02 dL/g were prepared from the diacid and various aromatic diamines by direct phosphorylation polycondensation. All the poly(amine amide)s were amorphous in nature, as evidenced by X‐ray diffractograms. Most of the poly(amine amide)s were quite soluble in a variety of organic solvents and could be solution‐cast into transparent, tough, and flexible films with good mechanical properties. They had useful levels of thermal stability associated with glass‐transition temperatures up to 280 °C, 10% weight‐loss temperatures in excess of 575 °C, and char yields at 800 °C in nitrogen higher than 60%. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 94–105, 2003  相似文献   

16.
A new type of tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid, 4,4′‐oxydiphthalic anhydride, and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I . A series of soluble and light‐colored poly(amide‐imide‐imide)s ( III a–j) was prepared by triphenyl phosphite‐activated polycondensation from I with various aromatic diamines ( II a–j). All films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 390 nm (374–390 nm) and b* values between 25.26 and 43.61; these polymers were much lighter in color than the alternating trimellitimide series. All of the polymers were readily soluble in a variety of organic solvents such as NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even in less polar m‐cresol and pyridine. Polymers III a–j afforded tough, transparent, and flexible films that had tensile strengths ranging from 96 to 118 MPa, elongations at break from 9 to 11%, and initial moduli from 2.0 to 2.5 GPa. The glass‐transition temperatures of the polymers were recorded at 240–268 °C. They had 10% weight loss at a temperature above 540 °C and left more than 55% residue even at 800 °C in nitrogen. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 707–718, 2002; DOI 10.1002/pola.10153  相似文献   

17.
Three series of aromatic polyamides, polyesters, and poly(1,3,4‐oxadiazole)s containing bulky fluorene structures were prepared from 9,9‐bis(4‐carboxyphenyl) fluorene. All of the polymers were readily soluble in many organic solvents and showed useful thermal stability associated with high glass‐transition temperatures in the range of 220–366 °C. These wholly aromatic polymer films were colorless, with high optical transparency, and exhibited UV‐vis absorption bands at 266–348 nm and photoluminescence maximum bands at 368–457 nm within the purple to green region in N,N‐dimethylacetamide (DMAc) solutions. The poly(amine‐amide) Ic exhibited excellent electrochromic contrast and coloration efficiency, changing color from the colorless neutral form to green and then to the dark blue oxidized forms with good stability of electrochromic characteristics. Almost all of these wholly aromatic polymer films were colorless and showed high optical transparency. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4352–4363, 2007  相似文献   

18.
Three new poly(p‐phenylenevinylene)‐based polymers containing two 1,3,4‐oxadiazole moieties in the main chain per repeat unit were synthesized by Heck coupling. A single, double, or triple bond was introduced between the oxadiazoles to provide a means for modifying the polymer properties. The polymers were readily soluble in common organic solvents and showed Tg values lower than 50 °C. The color of the emissive light in both the solid state and the solution could be tuned by a change in the nature of the bond between the oxadiazole rings. The polymers emitted ultraviolet‐green light in solution with a photoluminescence (PL) emission maximum at 345–483 nm and blue‐green light at 458–542 nm in thin films. The PL quantum yields in solution were 0.36–0.43. The electrochemical properties are affected by the nature of the bond between the oxadiazoles as well. In polymers with a single bond between the oxadiazoles, a lower ionization potential was observed than in polymers with a double or triple bond. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3079–3090, 2005  相似文献   

19.
Two new bis(ether acyl chloride)s, 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenylethane and 1,1‐bis[4‐(4‐chloroformylphenoxy)phenyl]‐1‐phenyl‐2,2,2‐trifluoroethane, were prepared from readily available reagents. Aromatic polybenzoxazoles with both ether and phenylethylidene or 1‐phenyl‐2,2,2‐trifluoroethylidene linkages between phenylene units were obtained by a conventional two‐step procedure including the low‐temperature solution polycondensation of the bis(ether acyl chloride)s with three bis(o‐aminophenol)s, yielding poly(o‐hydroxyamide) precursors, and subsequent thermal cyclodehydration. The intermediate poly(o‐hydroxyamide)s exhibited inherent viscosities of 0.39–0.98 dL/g. All of the poly(o‐hydroxyamide)s were amorphous and soluble in polar organic solvents such as N,N‐dimethylacetamide, and most of them could afford flexible and tough films via solvent casting. The poly(o‐hydroxyamide)s exhibited glass‐transition temperatures (Tg's) of 129–194 °C and could be thermally converted into corresponding polybenzoxazoles in the solid state at temperatures higher than 300 °C. All the polybenzoxazoles were amorphous and showed an enhanced Tg but a dramatically decreased solubility with to respect to their poly(o‐hydroxyamide) precursors. They exhibited Tg's of 216–236 °C through differential scanning calorimetry and were stable up to 500 °C in nitrogen or air, with 10% weight‐loss temperatures being recorded between 538 and 562 °C in nitrogen or air. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 914–921, 2003  相似文献   

20.
Methoxy‐substituted poly(triphenylamine)s, poly‐4‐methoxytriphenylamine ( PMOTPA ), and poly‐N,N‐bis(4‐methoxyphenyl)‐N′,N′‐diphenyl‐p‐phenylenediamine ( PMOPD ), were synthesized from the nickel‐catalyzed Yamamoto and oxidative coupling reaction with FeCl3. All synthesized polymers could be well characterized by 1H and 13C NMR spectroscopy. These polymers possess good solubility in common organic solvent, thermal stability with relatively high glass‐transition temperatures (Tgs) in the range of 152–273 °C, 10% weight‐loss temperature in excess of 480 °C, and char yield at 800 °C higher than 79% under a nitrogen atmosphere. They were amorphous and showed bluish green light (430–487 nm) fluorescence with quantum efficiency up to 45–62% in NMP solution. The hole‐transporting and electrochromic properties are examined by electrochemical and spectroelectrochemical methods. All polymers exhibited reversible oxidation redox peaks and Eonset around 0.44–0.69 V versus Ag/AgCl and electrochromic characteristics with a color change under various applied potentials. The series of PMOTPA and PMOPD also showed p‐type characteristics, and the estimated hole mobility of O ‐ PMOTPA and Y ‐ PMOPD were up to 1.5 × 10?4 and 5.6 × 10?5 cm2 V?1 s?1, respectively. The FET results indicate that the molecular weight, annealing temperature, and polymer structure could crucially affect the charge transporting ability. This study suggests that triphenylamine‐containing conjugated polymer is a multifunctional material for various optoelectronic device applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4037–4050, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号