首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper applies the isogeometric analysis (IGA) based on unified one-dimensional (1D) models to study static, free vibration and dynamic responses of metallic and laminated composite straight beam structures. By employing the Carrera Unified Formulation (CUF), 3D displacement fields are expanded as 1D generalized displacement unknowns over the cross-section domain. 2D hierarchical Legendre expansions (HLE) are adopted in the local area for the refinement of cross-section kinematics. In contrast, B-spline functions are used to approximate 1D generalized displacement unknowns, satisfying the requirement of interelement high-order continuity. Consequently, IGA-based weak-form governing equations can be derived using the principle of virtual work and written in terms of fundamental nuclei, which are independent of the class and order of beam theory. Several geometrically linear analyses are conducted to address the enhanced capability of the proposed approach, which is prominent in the detection of shear stresses, higher-order modes and stress wave propagation problems. Besides, 3D-like behaviors can be captured by the present IGA-based CUF-HLE method with reduced computational costs compared with 3D finite element method (FEM) and FEM-based CUF-HLE method.  相似文献   

2.
In the construction of nine point scheme,both vertex unknowns and cell-centered unknowns are introduced,and the vertex unknowns are usually eliminated by using the interpolation of neighboring cell-centered unknowns,which often leads to lose accuracy.Instead of using interpolation,here we propose a different method of calculating the vertex unknowns of nine point scheme,which are solved independently on a new generated mesh.This new mesh is a Vorono¨i mesh based on the vertexes of primary mesh and some additional points on the interface.The advantage of this method is that it is particularly suitable for solving diffusion problems with discontinuous coeffcients on highly distorted meshes,and it leads to a symmetric positive definite matrix.We prove that the method has first-order convergence on distorted meshes.Numerical experiments show that the method obtains nearly second-order accuracy on distorted meshes.  相似文献   

3.
Bi-parameter incremental unknowns (IU) alternating directional implicit (ADI) iterative methods are proposed for solving elliptic problems. Condition numbers of the coefficient matrices for these iterative schemes are carefully estimated. Theoretical analysis shows that the condition numbers are reduced significantly by IU method, and the iterative sequences produced by the bi-parameter incremental unknowns ADI methods converge to the unique solution of the linear system if the two parameters belong to a given parameter region. Numerical examples are presented to illustrate the correctness of the theoretical analysis and the effectiveness of the bi-parameter incremental unknowns ADI methods.  相似文献   

4.
An approximate method of determining the critical loads in problems of the stability of compressed rods has been extended to statically indeterminate systems. For this purpose, a method has been developed for solving stability problems when there are extraneous unknowns defined by the stationarity condition for the potential energy of the system. It is shown that, combined with Grammel's method and Hamilton's variational principle, the method described for determining the extraneous unknowns in statically indeterminate systems can also be used in problems of finding the natural frequencies of vibrations of rods.  相似文献   

5.
Through numerical experiments we explore the incremental unknowns method; linear stationary as well as evolutionary problems are considered. For linear stationary problems, the method appears as a nearly optimal two-step preconditioning technique. At each step, we observe that the convergence behavior of the iterative methods employed is dramatically different, depending upon whether or not preconditioning is used. For linear evolutionary problems, successful and sharply accurate long-term integration is observed when the incremental unknowns (other than that of the coarsest level) are, effectively, small quantities. Otherwise, systematical aliasing arises. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
We propose a new finite volume scheme for 2D anisotropic diffusion problems on general unstructured meshes. The main feature lies in the introduction of two auxiliary unknowns on each cell edge, and then the scheme has both cell‐centered primary unknowns and cell edge‐based auxiliary unknowns. The auxiliary unknowns are interpolated by the multipoint flux approximation technique, which reduces the scheme to a completely cell‐centered one. The derivation of the scheme satisfies the linearity‐preserving criterion that requires that a discretization scheme should be exact on linear solutions. The resulting new scheme is then called as a cell edge‐based linearity‐preserving scheme. The optimal convergence rates are numerically obtained on unstructured grids in case that the diffusion tensor is taken to be anisotropic and/or discontinuous. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
We present a Uzawa block relaxation method for the numerical resolution of contact problems with or without friction, between elastic solids in small deformations. We introduce auxiliary unknowns to separate the linear elasticity subproblem from the unilateral contact and friction conditions. Applying a Uzawa block relaxation method to the corresponding augmented Lagrangian functional yields a two-step iterative method with a linear elasticity problem as a main subproblem while auxiliary unknowns are computed explicitly. Numerical experiments show that the method are robust and scalable with a significant saving of computational time.  相似文献   

8.
Graph equations are equations in which the unknowns are graphs. Many problems and results in graph theory can be formulated in terms of graph equations. Here we offer a classification and a large bibliography of graph equations.  相似文献   

9.
The paper presents a parallel direct solver for multi-physics problems. The solver is dedicated for solving problems resulting from adaptive finite element method computations. The concept of finite element is actually replaced by the concept of the node. The computational mesh consists of several nodes, related to element vertices, edges, faces and interiors. The ordering of unknowns in the solver is performed on the level of nodes. The concept of the node can be efficiently utilized in order to recognize unknowns that can be eliminated at a given node of the elimination tree. The solver is tested on the exemplary three-dimensional multi-physics problem involving the computations of the linear acoustics coupled with linear elasticity. The three-dimensional tetrahedral mesh generation and the solver algorithm are modeled by using graph grammar formalism. The execution time and the memory usage of the solver are compared with the MUMPS solver.  相似文献   

10.
Incremental unknowns for solving partial differential equations   总被引:1,自引:0,他引:1  
Summary Incremental unknowns have been proposed in [T] as a method to approximate fractal attractors by using finite difference approximations of evolution equations. In the case of linear elliptic problems, the utilization of incremental unknown methods provides a new way for solving such problems using several levels of discretization; the method is similar but different from the classical multigrid method.In this article we describe the application of incremental unknowns for solving Laplace equations in dimensions one and two. We provide theoretical results concerning two-level approximations and we report on numerical tests done with multi-level approximations.  相似文献   

11.
We present a second kind integral equation (SKIE) formulation for calculating the electromagnetic modes of optical waveguides, where the unknowns are only on material interfaces. The resulting numerical algorithm can handle optical waveguides with a large number of inclusions of arbitrary irregular cross section. It is capable of finding the bound, leaky, and complex modes for optical fibers and waveguides including photonic crystal fibers (PCF), dielectric fibers and waveguides. Most importantly, the formulation is well conditioned even in the case of nonsmooth geometries. Our method is highly accurate and thus can be used to calculate the propagation loss of the electromagnetic modes accurately, which provides the photonics industry a reliable tool for the design of more compact and efficient photonic devices. We illustrate and validate the performance of our method through extensive numerical studies and by comparison with semi-analytical results and previously published results.  相似文献   

12.
The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they often have a computational advantage over alternatives that have been proposed for solving the same problem and that this makes them successful in many real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands of unknowns satisfying up to hundreds of thousands of constraints) and by a discussion of the demonstrated efficacy of projection methods in numerous scientific publications and commercial patents (dealing with problems that can have over a billion unknowns and a similar number of constraints).  相似文献   

13.
Deconvolution is usually regarded as one of the ill-posed problems in applied mathematics if no constraints on the unknowns are assumed. This article discusses the idea of well-defined statistical models being a counterpart of the notion of well-posedness. We show that constraints on the unknowns such as positivity and sparsity can go a long way towards overcoming the ill-posedness in deconvolution. We show how these issues are dealt with in a parametric deconvolution model introduced recently. From the same perspective we take a fresh look at two familiar deconvolvers: the widely used Jansson method and another one that minimizes the Kullback-Leibler divergence between observations and fitted values. In the latter case, we point out that in the context of deconvolution and the general linear inverse problems with positivity contraints, a counterpart of the EM algorithm exists for the problem of minimizing the Kullback-Leibler divergence. We graphically compare the performance of these deconvolvers using data simulated from a spike-convolution model and DNA sequencing data.  相似文献   

14.
三维多面体网格上扩散方程的保正格式   总被引:1,自引:0,他引:1  
王帅  杭旭登  袁光伟 《计算数学》2015,37(3):247-263
 针对三维任意(星形)多面体网格, 本文构造了扩散方程的一种单元中心型非线性有限体积格式, 证明了该格式具有保正性. 在该格式设计中, 除引入网格中心量外, 还引入网格节点量和网格面中心量作为中间未知量, 它们将用网格中心未知量线性组合表示, 使得格式仅有网格中心未知量作为基本未知量. 在节点量计算中, 利用网格面上的调和平均点, 设计了一种适用于三维多面体网格的局部显式加权方法. 该格式适用于求解非平面的网格表面和间断扩散系数的问题. 数值例子验证了它对光滑解具有二阶精度和保正性.  相似文献   

15.
The Singular Function Boundary Integral Method (SFBIM) for solving two-dimensional elliptic problems with boundary singularities is revisited. In this method the solution is approximated by the leading terms of the asymptotic expansion of the local solution, which are also used to weight the governing partial differential equation. The singular coefficients, i.e., the coefficients of the local asymptotic expansion, are thus primary unknowns. By means of the divergence theorem, the discretized equations are reduced to boundary integrals and integration is needed only far from the singularity. The Dirichlet boundary conditions are then weakly enforced by means of Lagrange multipliers, the discrete values of which are additional unknowns. In the case of two-dimensional Laplacian problems, the SFBIM converges exponentially with respect to the numbers of singular functions and Lagrange multipliers. In the present work the method is applied to Laplacian test problems over circular sectors, the analytical solution of which is known. The convergence of the method is studied for various values of the order p of the polynomial approximation of the Lagrange multipliers (i.e., constant, linear, quadratic, and cubic), and the exact approximation errors are calculated. These are compared to the theoretical results provided in the literature and their agreement is demonstrated.  相似文献   

16.
The projection method is applied to construct discrete models of boundary-value problems for a fourth-order ordinary differential equation in which the only unknowns are the solution values.Kiev University. Translated from Vychislitel'naya i Prikladnaya Matematika, No. 68, pp. 14–22, 1989.  相似文献   

17.
In the present paper, a new semi-analytical method is developed to cover a wide range of phase transformation problems and their practical applications. The solution procedure consists of two parts: first, determination of the position of the moving boundary named the homogenous part and second, determination of the concentration named the non-homogenous part. The homogenous part leads to a system of homogenous linear equations, based on the mathematical fact that a homogenous system has a non-trivial solution if the determinant of the coefficient matrix equals zero. This determinant leads to an ordinary differential equation for the moving boundary, and its solution leads to a closed form formula for the position of the moving boundary. The non-homogenous part transforms the governing equations to a non-homogenous linear system of equations, having three unknowns that appear in the concentration profile assumed in the beginning of the proposed method. Solution of the non-homogenous system leads to a value of these unknowns. Once these unknowns are computed, the concentration at any time and at any point can be found easily.  相似文献   

18.
Theoretical and Mathematical Physics - We consider the inverse problems of simultaneously determining two unknowns: the wave propagation velocity and the memory of a layered medium. To find them,...  相似文献   

19.
Our goal is to propose four versions of modified Marder–Weitzner methods and to present the implementation of the new-type methods with incremental unknowns for solving nonlinear eigenvalue problems. By combining with compact schemes and modified Marder–Weitzner methods, six schemes well suited for the calculation of unstable solutions are obtained. We illustrate the efficiency of the new algorithms by using numerical computations and by comparing them with existing methods for some two-dimensional problems.  相似文献   

20.
We consider a 2 time scale nonlinear system of ordinary differential equations. The small parameter of the system is the ratio ϵ of the time scales. We search for an approximation involving only the slow time unknowns and valid uniformly for all times at order O(ϵ2). A classical approach to study these problems is Tikhonov's singular perturbation theorem. We develop an approach leading to a higher order approximation using the renormalization group (RG) method. We apply it in 2 steps. In the first step, we show that the RG method allows for approximation of the fast time variables by their RG expansion taken at the slow time unknowns. Next, we study the slow time equations, where the fast time unknowns are replaced by their RG expansion. This allows to rigorously show the second order uniform error estimate. Our result is a higher order extension of Hoppensteadt's work on the Tikhonov singular perturbation theorem for infinite times. The proposed procedure is suitable for problems from applications, and it is computationally less demanding than the classical Vasil'eva‐O'Malley expansion. We apply the developed method to a mathematical model of stem cell dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号