首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Genetic analysis of infectious and genetic diseases and cancer diagnostics require the development of efficient tools for fast and reliable analysis of single-nucleotide polymorphism (SNP) in targeted DNA and RNA sequences often responsible for signalling disease onset. Here, we highlight the main trends in the development of electrochemical genosensors for sensitive and selective detection of SNP that are based on hairpin DNA architectures exhibiting better SNP recognition properties compared with linear DNA probes. SNP detection by electrochemical hairpin DNA beacons is discussed, and comparative analysis of the existing SNP sensing strategies based on enzymatic and nanoparticle signal amplification schemes is presented.  相似文献   

2.
陈尔凝  赵新颖  屈锋 《色谱》2016,34(4):389-396
核酸适配体(aptamer)是通过指数富集配体系统进化技术(SELEX)筛选的能够以高亲和力和高特异性识别靶标分子或细胞的核糖核酸(RNA)和单链脱氧核糖核酸(ssDNA)。作为化学抗体,核酸适配体的制备和合成比抗体的成本更低。核酸适配体的靶标范围极其广泛,包括小分子、生物大分子、细菌和细胞等。针对细菌靶标筛选的适配体,目前主要应用于食品、医药和环境中的细菌检测。细菌的核酸适配体筛选可以通过离心法将菌体-适配体复合物与游离的适配体分离,并通过荧光成像、荧光光谱分析、流式细胞仪分选、DNA捕获元件、酶联适配体分析等方法表征适配体与靶标的相互作用。筛选出的适配体可结合生物、化学检测方法用于细菌检测。本文介绍了细菌适配体的筛选和表征方法以及基于适配体的检测方法的最新进展,分析了不同检测方法的利弊,并列出了2011~2015年筛选的细菌的核酸适配体。  相似文献   

3.
Minisequencing, solid-phase single-nucleotide primer extension reaction, is a robust method for performing multiplex single-nucleotide polymorphism (SNP) analysis. We have combined this technology with capillary gel electrophoresis in a multicapillary format, using liquid core waveguide (LCW) fluorescence detection. Polymerase chain reaction (PCR) amplification of multiple DNA targets is performed with one primer for each target biotinylated. Separation of the complementary strands, minisequencing and washing steps are carried out using streptavidin-coated magnetic beads. Dideoxynucleotides analogues labelled with different fluorophores are used for the extension of the minisequencing primers. The extended oligonucleotides, the length of which defines the position on the target and the color the identity of the polymorphism, are then separated in a gel-filled array of capillaries, coated on the outside with a layer of a fluoropolymer to provide the liquid core waveguide characteristics. The technology has a potential for extremely high throughputs when a combination of multiplex PCR-minisequencing is used together with a large array of capillaries, four-color detection and high-speed separation.  相似文献   

4.
DNA detection is usually conducted under nondenaturing conditions to favor the formation of Watson–Crick base-paring interactions. However, although such a setting is excellent for distinguishing a single-nucleotide polymorphism (SNP) within short DNA sequences (15–25 nucleotides), it does not offer a good solution to SNP detection within much longer sequences. Here we report on a new detection method capable of detecting SNP in a DNA sequence containing 35–90 nucleotides. This is achieved through incorporating into the recognition DNA sequence a previously discovered DNA molecule that forms a stable G-quadruplex in the presence of 7 molar urea, a known condition for denaturing DNA structures. The systems are configured to produce both colorimetric and fluorescent signals upon target binding.  相似文献   

5.
In this paper, we described an assay for the detection of the C677T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene using denaturing high-performance liquid chromatography (DHPLC). The conditions for DHPLC analysis were systematically investigated based on a general HPLC instrument (Prostar VARIAN). A 225 bp DNA fragment covering the 677 site of MTHFR gene was amplified by PCR technology using the purified DNA from whole blood or whole blood as template DNA. PCR products were directly injected without the need for purification. The C677T mutation could be clearly distinguished by DHPLC technology. Our data demonstrated that DHPLC was a powerful and alternative tool for detection of genetic variants and single-nucleotide polymorphisms to electrophoresis technology.  相似文献   

6.
Denaturing CE (DCE) is a powerful tool for analysis of DNA variation. The development of commercial multi-CE instruments allows large-scale studies of DNA variation (many samples and many fragments). However, the cost of consumables like capillary arrays and sieving matrix might limit the use of DCE in such studies. Thus, we have tested 72 different in-house formulated sieving matrices' ability to suppress EOF and separate PCR-amplified alleles with the DCE variant, cycling temperature CE (CTCE). The data herein demonstrate that alleles can be baseline-separated by use of PVP and poly(N,N-dimethyl acrylamide) polymers at various percentages and pH. Allele separation by CTCE is matrix-independent and consequently applicable to any capillary instrument used for DNA separation. Formulation of sieving matrix for CTCE was done by dissolving appropriate amount of polymer powder into the running buffers. Allele separation was observed at different pH (7.5-8.5), concentrations and molecular size of the polymer, without compromising the separation and reproducibility. Finally, the cost reduction of homemade matrices is more than 1000-fold as compared to commercial sieving matrices.  相似文献   

7.
Amiloride (N-amidino-3,5-diamino-6-chloro-pyrazinecarboxamide hydrochloride) has two sets of hydrogen-bond forming sites suitable for target nucleotides and the phosphodiester DNA backbone by which a thymine base opposite an abasic site in DNA duplexes can be recognized with high selectivity and affinity, and it is applicable to the fluorescence detection of thymidine-related SNPs (single-nucleotide polymorphisms) of PCR amplification products.  相似文献   

8.
Zhang HD  Zhou J  Xu ZR  Song J  Dai J  Fang J  Fang ZL 《Lab on a chip》2007,7(9):1162-1170
A simple and robust chip-based temperature gradient capillary electrophoresis (TGCE) system was developed for DNA mutation/single-nucleotide polymorphism (SNP) analysis using a radiative heating system. Reproducible, stable and uniform temperature gradients were established along a 3 cm length of the electrophoretic separation channel using a single thermostated aluminium heater plate. The heater was slightly slanted relative to the plane of the glass chip at 0.2-1.3 degrees by inserting thin spacers between the plate and chip at one end to produce differences in radiative heating that created the temperature gradient. On-chip TGCE analyses of 4 mutant DNA model samples amplified from plasmid templates, each containing a single base substitution, with a wide range of melting temperatures, showed that mutations were successfully detected under a wide temperature gradient of 10 degrees C and within a short gradient region of about 3 cm (3.3 degrees C cm(-1) gradient). The radiative heating system was able to establish stable spatial temperature gradients along short microfluidic separation channels using simple peripheral equipment and manipulation while ensuring good resolution for detecting a wide range of mutations. Effectiveness of the system was demonstrated by the successful detection of K-ras gene mutations in 6 colon cancer cell lines.  相似文献   

9.
Rapid and precise screening of small genetic variations, such as single-nucleotide polymorphisms (SNPs), among an individual's genome is still an unmet challenge at point-of-care settings. One crucial step toward this goal is the development of discrimination probes that require no enzymatic reaction and are easy to use. Here we report a new type of fluorescent molecular probe, termed a chameleon NanoCluster Beacon (cNCB), that lights up into different colors upon binding SNP targets. NanoCluster Beacons (NCBs) are collections of a small number of Ag atoms templated on single-stranded DNA that fluoresce strongly when placed in proximity to particular DNA sequences, termed enhancers. Here we show the fluorescence emission color of a NCB can change substantially (a shift of 60-70 nm in the emission maximum) depending upon the alignment between the silver nanocluster and the DNA enhancer sequence. Chameleon NCBs exploit this color shift to directly detect SNPs, based on the fact that different SNPs produce a different alignment between the Ag nanocluster and the enhancer. This SNP detection method has been validated on all single-nucleotide substitution scenarios in three synthetic DNA targets, in six disease-related SNP targets, and in two clinical samples taken from patients with ovarian serous borderline tumors. Samples with single-nucleotide variations can be easily identified by the naked eye under UV excitation, making this method a reliable and low-cost assay with a simple readout format.  相似文献   

10.
Which genetic marker for which conservation genetics issue?   总被引:8,自引:0,他引:8  
Wan QH  Wu H  Fujihara T  Fang SG 《Electrophoresis》2004,25(14):2165-2176
Conservation genetics focuses on the effects of contemporary genetic structuring on long-term survival of a species. It helps wildlife managers protect biodiversity by identifying a series of conservation units, which include species, evolutionarily significant units (ESUs), management units (MUs), action units (AUs), and family nets (FNs). Although mitochondrial DNA (mtDNA) evolves 5-10 times faster than single-copy nuclear DNA (scnDNA), it records few traces of contemporary events. Thus, mtDNA can be used to resolve taxonomic uncertainties and ESUs. Variable number of tandem repeats (VNTRs) evolve 100-1000 times faster than scnDNA and provide a powerful tool for analyzing recent and contemporary events. VNTR analysis techniques include polymerase chain reaction (PCR)-based microsatellite assays and oligonucleotide probing. Size homoplasy problems in PCR-based microsatellite assays can strongly affect the inference of recent population history. The high homozygosity in endangered species is reflected in a relatively low number and level of variability in microsatellite loci. This combined with "allelic dropout" and "misprinting" errors contributes to the generation of highly biased genetic data following analyses of natural populations. Thus, in conservation genetics, microsatellites are of limited use for identifying ESUs, MUs, and AUs. In contrast to PCR-based microsatellite analysis, oligonucleotide probing avoids errors resulting from PCR amplification. It is particularly suitable for inferring recent population history and contemporary gene flow between fragmented subpopulations. Oligonucleotide fingerprinting generates individual-specific DNA banding patterns and thus provides a highly precise tool for monitoring demography of natural populations. Hence, DNA fingerprinting is powerful for distinguishing ESUs, MUs, AUs, and FNs. The use of oligonucleotide fingerprinting and fecal DNA is opening new areas for conservation genetics.  相似文献   

11.
A colorimetric, non-cross-linking aggregation-based gold-nanoparticle (AuNP) probe has been developed for the detection of DNA and the analysis of single-nucleotide polymorphism (SNP). The probe acts by modulating the enzyme activity of thrombin relative to fibrinogen. A thrombin-binding aptamer with a 29-base-long oligonucleotide (TBA(29)) assembled on the nanoparticles (TBA(29)-AuNPs) through sandwich DNA hybridization was found to possess ultra-high anticoagulant potency. The enzyme inhibition of thrombin was determined by thrombin-induced aggregation of fibrinogen-functionalized 56 nm AuNPs (Fib-AuNPs). The potency of the inhibition of TBA(29)-AuNPs relative to thrombin--and thus the degree of aggregation of the Fib-AuNPs--is highly dependent on the concentration of perfectly matched DNA (DNA(pm)). Under optimal conditions [Tris-HCl (20 mM, pH 7.4), KCl (5 mM), MgCl(2) (1 mM), CaCl(2) (1 mM), NaCl (150 mM), thrombin (10 pM), and TBA(29)-AuNPs (20 pM)], the new TBA(29)-AuNP/Fib-AuNP probe shows linear sensitivity to DNA(pm) in the concentration range 20-500 pM with a correlation coefficient of 0.96. The limit of detection for DNA(pm) was experimentally determined to be 12 pM, based on a signal-to-noise ratio (S/N) of 3. The new probe was successfully applied to the analysis of an SNP that is responsible for sickle cell anemia. Relative to conventional molecular-beacon-based probes, the new probe offers the advantages of higher sensitivity and selectivity towards DNA and lower cost, showing its great potential for practical studies of SNPs.  相似文献   

12.
This critical review summarizes recent developments in highly sensitive, specific assays using nucleic-acid (NA)-affinity probes and fluorescence detection. We emphasize two groups of DNA and RNA probes (i.e. aptamers and molecular beacons) because of the increase in their bioanalytical applications. The affinity and the specificity of these NA probes combined with the diverse detection capability of fluorescence measurements (e.g., intensity, polarization, resonance-energy transfer and decay life-time) enable ultrasensitive assays for proteins, gene mutations, single-nucleotide polymorphisms and molecular-binding events.  相似文献   

13.
Whole genome amplification replicates the entire DNA content of a sample and can thus help to circumvent material limitations when insufficient DNA is available for planned genetic analyses. However, there are conflicting data in the literature whether whole genome amplification introduces bias or reflects precisely the spectrum of starting DNA. We analyzed the origins of discrepancies in KRAS (Kirsten rat sarcoma viral oncogene homolog gene) mutation detection in six of ten samples amplified using the GenomePlex® Tissue Whole Genome Amplification kit 5 (WGA5; Sigma‐Aldrich, St. Louis, MO, USA) and KRAS StripAssay® (KRAS SA; ViennaLab Diagnostics, Vienna, Austria). We undertook reextraction, reamplification, retyping, authentication, reanalysis, and reinterpretation to determine whether the discrepancies originated during the preanalytical, analytical, and/or interpretative phase of genotyping. We conclude that a combination of glass slide/sample heterogeneity and biased amplification due to stochastic effects in the early phases of whole genome amplification (WGA) may have adversely affected the results obtained. Our findings are relevant for both forensic genetics testing and massively parallel sequencing using preamplification.  相似文献   

14.
Sex determination of anonymous samples is a requirement before analysis of DNA variation on X or Y chromosomes. Based on this, we designed a method for screening samples on different DNA capillary sequencing instruments with a sensitivity that is able to quantify sex chromosome abnormalities. The two different amelogenin alleles sited on the X and Y chromosomes were polymerase chain reaction amplified with the same set of primers and separated by denaturant capillary electrophoresis (DCE). Sex chromosome ratios could be reproducibly determined with a relative standard deviation of 8.7%, which is sufficient to distinguish a normal XY karyotype from an XYY karyotype associated with Klinefelter syndrome. Reconstruction experiments demonstrated sensitivity down to a simulated Y:X allelic ratio of 1:127 in all three instruments, enabling the prediction of sex chromosomal aneuploidies. When tested on anonymous pooled and single samples, DCE gave a good prediction of the male to female ratio in pools of 1000 blood donors. In conclusion, DCE is a simple and robust method for sex determination that can be readily performed on commercially available CE systems.  相似文献   

15.
Two 10-mer DNA probes, or one 20-mer DNA probe, respectively, hybridize with a 21-mer target DNA to form a vacancy or bulge opposite the target nucleotide. The former double-DNA-probe method and the latter bulge form method are applicable to the detection of single-nucleotide polymorphisms (SNPs). A small fluorescent dye enters into the vacancy or bulge and binds with a target nucleotide via a hydrogen bonding interaction, which causes fluorescence quenching. The interaction between fluorescent dye and the target nucleotide is confirmed by measuring the melting temperature and fluorescence spectra. The fluorescent dye, ADMND (2-amino-5,7-dimethyl-1,8-naphthyridine), is found to selectively bind with C over A or G. The methods proposed here are economic, convenient, and effective for the fluorescence detection of SNPs. Finally, the double-DNA-probe method and bulge form method are successfully applied to the detection of C/G and C/A mutations in the estrogen receptor 2 gene and progesterone receptor gene using ADMND.  相似文献   

16.
Cao YC  Jin R  Thaxton CS  Mirkin CA 《Talanta》2005,67(3):449-455
Herein, we describe the detailed synthesis of Ag/Au core-shell nanoparticles, the surface-functionalization of these particles with thiolated oligonucleotides, and their subsequent use as probes for DNA detection. The Ag/Au core-shell nanoparticles retain the optical properties of the silver core and are easily functionalized with thiolated oligonucleotides due to the presence of the gold shell. As such, the Ag/Au core-shell nanoparticles have optical properties different from their pure gold counterparts and provide another “color” option for target DNA-directed colorimetric detection. Size-matched Ag/Au core-shell and pure gold nanoparticles perform nearly identically in DNA detection and melting experiments, but with distinct optical signatures. Based on this observation, we report the development of a two-color-change method for the detection and simultaneous validation of single-nucleotide polymorphisms in a DNA target using Ag/Au core-shell and pure gold nanoparticle probes.  相似文献   

17.
Li Q  Liu Z  Monroe H  Culiat CT 《Electrophoresis》2002,23(10):1499-1511
We have developed a highly versatile platform that performs temperature gradient capillary electrophoresis (TGCE) for mutation/single-nucleotide polymorphism (SNP) detection, sequencing and mutation/SNP genotyping for identification of sequence variants on an automated 24-, 96- or 192-capillary array instrument. In the first mode, multiple DNA samples consisting of homoduplexes and heteroduplexes are separated by CE, during which a temperature gradient is applied that covers all possible temperatures of 50% melting equilibrium (Tms) for the samples. The differences in Tms result in separation of homoduplexes from heteroduplexes, thereby identifying the presence of DNA variants. The sequencing mode is then used to determine the exact location of the mutation/SNPs in the DNA variants. The first two modes allow the rapid identification of variants from the screening of a large number of samples. Only the variants need to be sequenced. The third mode utilizes multiplexed single-base extensions (SBEs) to survey mutations and SNPs at the known sites of DNA sequence. The TGCE approach combined with sequencing and SBE is fast and cost-effective for high-throughput mutation/SNP detection.  相似文献   

18.
We report a new approach for electrochemical quantification of single-nucleotide polymorphisms (SNPs) using nanoparticle probes. The principle is based on DNA polymerase I (Klenow fragment)-induced coupling of the nucleotide-modified nanoparticle probe to the mutant sites of duplex DNA under the Watson-Crick base pairing rule. After liquid hybridization events occurred among biotinylated DNA probes, mutant DNA, and complementary DNA, the resulting duplex DNA helixes were captured to the surface of magnetic beads through a biotin-avidin affinity reaction and magnetic separation. A cadmium phosphate-loaded apoferritin nanoparticle probe, which is modified with nucleotides and is complementary to the mutant site, is coupled to the mutant sites of the formed duplex DNA in the presence of DNA polymerase. Subsequent electrochemical stripping analysis of the cadmium component of coupled nanoparticle probes provides a means to quantify the concentration of mutant DNA. The method is sensitive enough to detect 21.5 attomol of mutant DNA, which will enable the quantitative analysis of nucleic acid without polymerase chain reaction preamplification. The approach was challenged with constructed samples containing mutant and complementary DNA. The results indicated that it was possible to accurately determine SNPs with frequencies as low 0.01. The proposed approach has a great potential for realizing an accurate, sensitive, rapid, and low-cost method of SNP detection.  相似文献   

19.
Numerous mutations and polymorphisms in human genes remain to be identified using reliable methods. Of the available mutation scanning methods those dependent on structural change-induced mobility shifts are highly effective. Their efficiency is, however, DNA length-sensitive and the reasons for that are poorly understood. In this study, we explain why scanning genes for mutations is less effective in longer DNA fragments, and reveal the factors which are behind this effect. We have performed a systematic analysis of the same sequence variants of exon 11 of the BRCA1 gene in DNA fragments of three different lengths using the combined single-strand conformation polymorphism (SSCP) and heteroduplex analysis (DA) by capillary electrophoresis (CE). There are two major structural factors responsible for the reduced mutation detection rate in long amplicons. The first is increased contribution from other secondary structure modules and domains in longer fragments, which mask the structural change induced by the mutation. The second is higher frequency of single-nucleotide polymorphisms (SNPs) including common polymorphisms in longer fragments. This makes it necessary to distinguish the structural effect of the mutation from that of each polymorphic variant, which is often difficult to achieve. Taking these factors into account, an efficient scanning of genes for sequence variants by conformation-sensitive methods may be performed.  相似文献   

20.
Genotyping and gene-expression monitoring is critical to the study of the association between genetics and drug response (pharmacogenomics) and the association of sequence variation with heritable phenotypes. Recently, we developed an entirely electronic method for the detection of DNA hybridization events by the site-specific incorporation of ferrocenyl derivatives into DNA oligonucleotides. To perform rapid and accurate point mutation detection employing this methodology, two types of metal-containing signaling probes with varying redox potentials are required. In this report we describe a new ferrocene-containing phosphoramidite 9 that provides a range of detectable redox potentials. Using automated DNA/RNA synthesis techniques the two ferrocenyl complexes were inserted at various positions along oligonucleotide probes. Thermal stability analysis of these metal-containing DNA oligonucleotides indicates that incorporation of 9 resulted in no destabilization of the duplex. A mixture of oligonucleotides containing compounds 9 and I was analyzed by alternating current voltammetry (ACV) monitored at the 1st harmonic. The data demonstrate that the two ferrocenyl oligonucleotide derivatives can be distinguished electrochemically. A CMS-DNA array was prepared on an array of gold electrodes on a printed circuit board substrate with a self-assembled mixed monolayer, coupled to an electronic detection system. Experiments for the detection of a single-base match utilizing two signaling probes were carried out. The results demonstrate that rapid and accurate detection of a single-base mismatch can be achieved by using these dual-signaling probes on CMS-DNA chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号