首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
通过喷雾干燥技术制备了一系列无机纳米粒子(凹凸棒土和/或二氧化硅)与有机磷酸盐类成核剂(NA11)复配的复合成核剂.研究了复合成核剂对聚丙烯力学性能与结晶行为的影响.采用透射电镜(TEM)、扫描电镜(SEM)、偏光显微镜(POM)、广角X射线衍射仪(WAXD)等对复合成核剂在聚丙烯中的分散和对结晶行为的影响进行了表征和分析,并且对复合成核剂改性聚丙烯的机理进行了探讨.结果表明,这种复合成核剂对聚丙烯力学性能的改善明显,聚丙烯的刚性迅速增加,其中三元成核剂对聚丙烯刚性的提高更显著,该成核剂在0.2%用量下对聚丙烯力学性能的改善效果,相当于同等添加量下纯NA11的改性效果.微观形态研究表明三元复合成核剂体系中,三组分形成了相互隔离的分散状态,使有机成核剂和无机纳米粒子可以在聚丙烯基体中实现良好分散.  相似文献   

2.
表面接枝改性纳米二氧化硅填充聚丙烯的结晶行为   总被引:13,自引:0,他引:13  
应用差示扫描量热方法研究了纳米二氧化硅 (SiO2 )及其表面接枝改性对聚丙烯 (PP)结晶过程、等温与非等温结晶动力学的影响 ,并研究了上述等温结晶的熔融行为和平衡熔点 .研究发现纳米SiO2 具有明显的异相成核效应 ,能够提高PP的结晶温度、熔融温度、结晶度和结晶速率 ,但降低聚丙烯结晶的完善程度 .粒子的表面接枝处理 ,因改善了粒子与基体的亲和性而有利于粒子成核效应的提高 ,而且此效应尚与粒子的分散相关  相似文献   

3.
通过将不同改性的高岭土与聚丙烯共混, 制备了聚丙烯插层的PP/高岭土纳米复合材料. 并通过X射线衍射分析(XRD)、透射电子显微镜(TEM)研究了复合材料的微观结构, 同时通过差示扫描(DSC)非等温结晶方法和偏光显微镜(PLM)照片, 研究了改性高岭土母粒对聚丙烯的结晶性能的影响. 采用Avrami方程式及Jeziorny修正过的Avrami的方程式对PP/高岭土的非等温结晶动力学进行了研究. 结果表明, 有机改性过的高岭土可被聚丙烯完全剥离, 在XRD谱图中, 高岭土的001峰不可见, 在TEM中可见剥离的片层. 同时随着改性高岭土的加入, 使得聚丙烯异相成核结晶增长, 且填充聚丙烯的最快结晶温度在395K. 结果也表明, 有机改性的高岭土能有效促进PP的异相成核, 提高PP的结晶速率和结晶温度, 但对结晶速率常数影响不是很大.  相似文献   

4.
纳米碳酸钙及其表面处理对等规聚丙烯结晶行为的影响   总被引:28,自引:0,他引:28  
应用差示扫描量热方法研究了不同表面改性碳酸钙纳米粒子对聚丙烯 (PP)等温与非等温结晶动力学的影响 ,并研究了上述各聚丙烯结晶样品的熔融行为和晶型 .研究发现纳米碳酸钙具有明显的成核效应 ,并具有较强的诱导 β 型结晶的能力 ,而且与粒子的表面处理密切相关 .  相似文献   

5.
以大豆油/邻苯二甲酸二丁酯(DBP)为混合稀释剂,采用热致相分离法(TIPS)制备聚丙烯(PP)微孔膜.研究了纳米碳酸钙成核剂、纳米碳酸钙/庚二酸复合成核剂对PP/大豆油/DBP(30/42/28,质量比)混合体系中PP结晶、熔融性能和PP微孔膜微观结构的影响.结果表明,单一纳米碳酸钙成核剂加入量为PP的0%~4%(质量百分率)时,PP/DBP/大豆油体系中PP熔融曲线上对应的峰值温度(Tpm)降到150.7~151.3℃,而纯PP的熔融峰值温度为165℃;DSC实验结果还显示加入1%~4%纳米碳酸钙和0.5%庚二酸后,导致PP的熔融曲线上出现了熔融双峰,说明纳米碳酸钙/庚二酸复合成核剂与单一成核剂相比有明显地促进β晶生成的作用,宽角X射线衍射(WAXD)实验进一步证实了β晶的存在.单一纳米碳酸钙成核剂对PP微孔膜的球晶结构和微观孔结构影响不大;加入纳米碳酸钙/庚二酸复合成核剂明显影响PP微孔膜的球晶结构和微观孔结构,其中0.5%庚二酸和1%纳米碳酸钙组成的复合成核剂制得的PP微孔膜的球晶结构明显,微孔膜孔径小且分布均匀;进一步增加纳米碳酸钙用量,PP微孔膜生成了许多细小的边界模糊的不规则结晶,微孔膜孔径不规则且尺寸较大,这与此时PP形成β晶结构有关.  相似文献   

6.
β晶型成核剂对聚丙烯力学及结晶性能的影响   总被引:7,自引:0,他引:7  
刘晓霞  张普玉 《应用化学》2006,23(11):1269-0
研究了N,N′-二环己胺基对苯二酰胺作为β成核剂对聚丙烯(PP)力学性能及结晶性能的影响。结果表明,成核剂具有使聚丙烯增韧的优异性能,当添加质量分数为0.3%时,其抗冲击强度由原来的36.06 J/m2提高到65.79 J/m2。DSC研究表明,添加β成核剂可以诱导PP中β晶生成。考察了冷却速率对结晶温度的影响,当冷却速率为10℃/m in时,结晶温度从118.38℃提高到124.53℃,表明该成核剂的加入使结晶向高温方向偏移,结晶速度加快。  相似文献   

7.
孙静  胡建设  钞春英  郭志兴  祁阳 《化学学报》2010,68(10):1003-1009
采用广角X射线衍射(WAXD)与偏光显微镜(POM)等手段研究了硅氧烷液晶共聚物(LCP-O2)作为新型成核剂对聚丙烯(PP)共混样品结晶结构与形态的影响.结果表明,低浓度的LCP-O2在PP共混体系中起到异相成核的作用,使PP的晶核数目增多,球晶细化,并提高了结晶速度,同时也诱导出了β晶的形成.LCP-O2的成核效果主要依赖于其在PP中的相对含量、液晶的分子结构与结晶的热处理过程,且随着结晶温度或成核剂含量的增加,对应PP试样的β晶含量(Kβ)呈现先增加,后降低的趋势.当LCP-O2质量分数为1.0%,在130℃等温结晶1h,对应PP试样的Kβ最大,为58%.此外,属于单斜晶的α球晶呈现黑白颜色,晶束呈放射状生长,边界清晰;而属于三方晶的β球晶亮度要高于α球晶,其颜色艳丽多彩,束状晶片聚集体呈支化生长,内部排列比α晶疏散,边界相对模糊,且β晶与α晶的形态分别在157和171℃完全消失.  相似文献   

8.
透明聚丙烯(PP)以其优异的光学和力学性吸引了越来越多研究者的重视。本文综述了透明PP制备工艺技术的研究发展状况,重点介绍了提高PP透明性的几种途径,阐述了成核剂增透、无规共聚、茂金属催化、共混改性等研究方法和研究进展。目前,透明聚丙烯制备工艺技术以齐格勒-纳塔催化剂无轨共聚PP和添加成核剂为主,茂金属催化PP为最理想的透明材料。同时展望了透明聚丙烯制备工艺技术发展的某些可能趋势。  相似文献   

9.
采用接枝聚合的方法,合成了一种新型聚硅氧烷类向列相液晶共聚物(LCP-H4),然后将LCP-H4与PP在一定工艺条件下密炼共混,得到了一系列的共混样品,采用WAXD、POM与DSC等研究了LCP-H4作为成核剂对PP样品结晶结构、形态与热性能的影响.结果表明,具有独特"液晶"性能的LCP-H4为PP结晶提供了更多的带自由能的晶核与较多的活性点,起到了异相成核的作用,既提高了PP的结晶速度、结晶温度和结晶度,又减小了球晶的尺寸,同时也改变了PP的结晶结构、形态及热力学与动力学,诱导出了β晶.此外,随着增加LCP-H4的含量及结晶温度,对应PP试样的β晶含量(Kβ)呈现先增加后降低的趋势,当LCP-H4含量为0.9%,在128℃等温结晶1h,对应成核PP的Kβ最大,为54%.  相似文献   

10.
研究了聚丁烯-1(PB-1)及聚丁烯合金(PBA)中PB-1的溶液等温结晶行为.测定了PB-1在正庚烷溶剂中的溶解度曲线,采用膨胀计法研究了PB-1和PBA中PB-1组分的溶液等温结晶动力学.研究发现,等温结晶温度的升高会降低PB-1的结晶速率,但不影响PB-1在溶液中的结晶成核方式;PBA中PB-1组分的溶液等温结晶速率更快,聚丙烯(PP)组分的存在改变了PB-1的结晶成核方式.示差扫描量热仪(DSC)和广角X射线衍射仪(WAXD)测试表明PB-1的溶液等温结晶形成I′和III晶型,结晶温度的提高与PP组分的存在都会促进PB-1晶型III的产生.  相似文献   

11.
The crystallization behavior of polyethylene (PE) and polypropylene (PP), including the neat ones and the ones nucleated with the same nucleating agent (NA), was studied by DSC. It was found that the nucleating agent decelerated the PE nonisothermal crystallization process. NA did enhance the nucleating rates for both PE and PP, but the linear growth rate dominated the volumetric growth rate for PE, and the volumetric growth rate dominated the overall crystallization rate. That is why PE nucleated with NA had a slower overall crystallization rate than the neat one.  相似文献   

12.
Crystallization and melting behaviors of isotactic polypropylene (iPP) nucleated with compound nucleating agents of sodium 2,2′‐methylene‐bis (4,6‐di‐tert‐butylphenyl) phosphate (hereinafter called as NA40)/dicyclohexylterephthalamide (hereinafter called as NABW) (weight ratio of NA40 to NABW is 1:1) were studied by differential scanning calorimetry and wide‐angle X‐ray diffraction (WAXD), the relative β‐amount of iPP nucleated with these compound nucleating agents was also calculated in Turner‐Jones equation by using wide‐angle X‐ray diffraction data. Under isothermal crystallization, there exists a temperature range favorable for formation of β‐iPP. When the concentration of compound nucleating agents is 0.2 wt %, the temperature range is from 100 to 140 °C. While in nonisothermal crystallization, lower cooling rate is favorable for form of β‐iPP and the relative β‐amount of iPP increases with the decreasing of cooling rate in crystallization process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 911–916, 2008  相似文献   

13.
Addition of an α‐nucleating agent is the simple and effective method to increase nucleation efficiency of isotactic polypropylene (iPP). However, severe agglomeration and poor dispersibility of sodium 2,2′‐methylene‐bis(4,6‐di‐tertbutylphenyl) phosphate (NA11) decrease the nucleation efficiency in the iPP, and much more nucleating agent is needed to maintain the nucleating property. As a result, it becomes the key how to decrease the size of NA11 and increase the nucleating property. In this paper, zeolite 4A (Z4A) was firstly supported by NA11 through solution impregnation, and NA11 was dispersed by Z4A depending on the dispersion of zeolite as carrier for the second component. Then, the dispersed NA11 system (NA11‐Z4A) exhibited a superior nucleation behavior during the crystallization of the iPP matrix when it was used with iPP together. The isothermal and nonisothermal crystallization kinetics indicated that the NA11‐Z4A/iPP system had the best crystallization effect. Polarized optical microscopy (POM) and scanning electron microscopy (SEM) analyses showed that the size of NA11 decreased obviously when it was adsorbed on the surface of Z4A, which leads a better dispersibility of the nucleating agent and thus an accelerated nucleation process in the iPP matrix. In the end, the mechanism for the excellent dispersibility of NA11‐Z4A, which was based on hydrogen bonding between NA11 and Z4A, was confirmed by Fourier‐transform infrared spectroscopy (FTIR). Based on the research work, the solution impregnation strategy can potentially be applied to other systems to inhibit the agglomeration and improve the dispersibility of additives in iPP.  相似文献   

14.
The crystallization kinetics of polypropylene (PP) with or without sodium benzoate as a nucleating agent were investigated by means of DSC and polarized optical microscopy in isothermal and nonisothermal modes. A modified Avrami equation was applied to the kinetic analysis of isothermal crystallization. The addition of the nucleating agent up to its saturation concentration increased the crystallization temperature by 15 °C and shortened both the isothermal and nonisothermal crystallization half‐times. It was concluded that the sodium benzoate acted as a good nucleating agent for α‐form PP. By adding the nuclefier to PP, adequately controlled spherulites increased the mechanical properties including especially the Izod impact strength and shortened cycle time of PP. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1001–1016, 2001  相似文献   

15.
The objectives of this paper are to understand the crystallization behavior of polypropylene(PP)composites with surface modified tetra-needle-shaped zinc oxide whisker(T-ZnOw).T-ZnOw was surface modified with different coupling agents,such as silane coupling agents(KH-550,KH-560)and titanate coupling agent(NDZ-105),in order to improve the compatibility between PP and T-ZnOw.DSC and POM were used to characterize the melt and crystallization behavior and the crystalline structures of the composites,respectively.The results show that the surface modified T-ZnOw acts as a nucleating agent of PP crystallization,depending on the coupling agent used for modification.KH-550 and KH-560 have more apparent role in improving the interfacial interaction than NDZ-105 and induce PP crystallization at higher temperature and with smaller spherulites size.The results also suggest that the crystallization behavior depends on not only the content of coupling agent,but also the content of the surface modified T-ZnOw used in the composites.  相似文献   

16.
In the present work, α‐form nucleating agent 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) is introduced into the blends of polypropylene/ethylene–octene copolymer (PP/POE) blends to study the effect of the nucleating agent on the toughness of PP/POE blends through affecting the crystallization behavior of PP matrix. Compared with the PP/POE blends, in which the toughness of the blends increases gradually with the increasing content of POE and only a weak transition in toughness is observed, addition of 0.2 wt % DMDBS induces not only the definitely brittle‐ductile transition at low POE content but also the enhancement of toughness and tensile strength of the blends simultaneously. Study on the morphologies of impact‐fractured surfaces suggests that the addition of a few amounts of DMDBS increases the degree of plastic deformation of sample during the fracture process. WAXD results suggest that POE induces the formation of the β‐form crystalline of PP; however, DMDBS prevents the formation of it. SEM results show that the addition of DMDBS does not affect the dispersion and phase morphologies of POE particles in PP matrix. DSC and POM results show that, although POE acts as a nucleating agent for PP crystallization and which enhances the crystallization temperature of PP and decreases the spherulites size of PP slightly, DMDBS induces the enhancement of the crystallization temperature of PP and the decrease of spherulites size of PP more greatly. It is concluded that the definitely brittle–ductile transition behavior during the impact process and the great improvement of toughness of the blends are attributed to the sharp decrease of PP spherulites size and their homogeneous distribution obtained by the addition of nucleating agent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 577–588, 2008  相似文献   

17.
The effect of a sorbitol nucleating agent on crystallization of polypropylene (PP) in droplets was studied. Layer‐multiplying coextrusion was used to fabricate assemblies of 257 layers, in which PP nanolayers alternated with thicker polystyrene (PS) layers. The concentration of a commercial nucleating agent, Millad 3988 (MD) in the layers was varied up to 2 wt %. When the assembly was heated into the melt, interfacial driven breakup of the 12 nm PP layers produced a dispersion of submicron PP particles in a PS matrix. Analysis of optical microscope images and atomic force microscope images indicated that the particle size was not affected by the presence of MD. The crystallization behavior of the particle dispersion was characterized by thermal analysis. In the absence of a nucleating agent, the submicron particles crystallized almost exclusively by homogeneous nucleation at about 40 °C. Addition of a nucleating agent to the PP layers offered a unique opportunity to study the nature of heterogeneous nucleation. Nucleation by MD resulted in fractionated crystallization of the submicron PP particles. The concentration dependence of the multiple crystallization exotherms was interpreted in terms of the binary polypropylene‐sorbitol phase diagram. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1788–1797, 2007  相似文献   

18.
In this work, a novel nucleating agent (NA) based on substituted‐aryl phosphate salts was introduced into poly(L‐Lactide) (PLLA). The nonisothermal and isothermal crystallization behaviors of nucleated PLLA samples were investigated through differential scanning calorimetry (DSC), wide angle X‐ray diffraction, and polarized optical microscope (POM). Furthermore, the effect of annealing treatment on the cold crystallization behaviors of nucleated samples was also investigated. The results show that the crystallization of PLLA, whether for the melt crystallization (including nonisothermal and isothermal crystallization process) or for the cold crystallization (including the cold crystallization occurring during the DSC heating process and during the annealing process), is greatly dependent upon the content of NA. At relatively lower NA content (≤0.1 wt%), the nucleation effect of NA is inconspicuous, however, at higher NA content (≥0.2 wt%), it exhibits great nucleation effect for the crystallization of PLLA. Further results show that the double endothermic peak of PLLA depends on the temperature applied for the crystallization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
去氢枞酸类成核剂改性聚丙烯的非等温结晶动力学研究   总被引:7,自引:0,他引:7  
对以去氢枞酸盐为成核剂的聚丙烯非等温结晶动力学进行了研究,用修正Avrami方程的Jexiorny法和莫志深法进行处理。结果表明:修正Avrami方程的Jeziorny方法和莫志深法都适用于去氢枞酸类成核剂改性的聚丙烯的非等温结晶动力学。在同样的降温速率下纯聚丙烯的t1/2比成核聚丙烯的t1/2要长,当降温速率为20K/min时,纯聚丙烯和成核聚丙烯的t1/2分别为0.78min和0.51min。同时从莫志深法得到的F(T)结果可以看出,达到相同的结晶度时纯聚丙烯所需的降温速率要大于成核聚丙烯所需的降温速率,说明成核剂的加入提高了聚丙烯的结晶速率。从Jeziorny法求出的纯聚丙烯和成核聚丙烯的Avrami指数分别为4.46和2.77,表明成核剂改变了聚丙烯的结晶成核和生长方式。  相似文献   

20.
The effects of nucleating agents (NAs) on fracture toughness of injection‐molded isotactic poly(propylene)/ethylene‐propylene‐diene terpolymer (PP/EPDM) were studied in this work. Compared with PP/EPDM blends without any NA, PP/EPDM/NA blends show very small and homogeneous PP spherulites. As we expected, PP/EPDM blends nucleated with β‐phase NA aryl amides compound (TMB‐5) present not only a significant enhancement in toughness but also a promotion of brittle‐ductile transition. However, the addition of α‐phase NA 1,3:2,4‐bis(3,4‐dimethylbenzylidene) sorbitol (DMDBS) has no apparent effect on the toughness of the blends. The impact‐fractured surface morphologies of such samples were analyzed via scanning electronic microscope (SEM). More detail work about the toughening mechanisms of elastomer and NA based on elastomer particles size and matrix crystal structures were carried out. Our results suggest that, besides the crystal structures of matrix, the elastomer particles size and size distribution plays an important role in controlling the toughening effect of nucleated PP/elastomer blends. The smaller the elastomer particles size and lower the polydispersity, the more apparent the synergistic toughening effect of NA and elastomer is. This investigation provides a fresh insight into the understanding of toughening mechanism of elastomers in PP blends and facilitates to the design of super toughened PP materials. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 46–59, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号