首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
Analysis of molecules by ion mobility spectrometry coupled with mass spectrometry (IMS-MS) provides chemical information on the three dimensional structure and mass of the molecules. The coupling of ion mobility to trapping mass spectrometers has historically been challenging due to the large differences in analysis time between the two devices. In this paper we present a modification of the trapped ion mobility (TIMS) analysis scheme termed “Gated TIMS” that allows efficient coupling to a Fourier Transform Ion Cyclotron Resonance (FT-ICR) analyzer. Analyses of standard compounds and the influence of source conditions on the TIMS distributions produced by ion mobility spectra of labile ubiquitin protein ions are presented. Ion mobility resolving powers up to 100 are observed. Measured collisional cross sections of ubiquitin ions are in excellent qualitative and quantitative agreement to previous measurements. Gated TIMS FT-ICR produces results comparable to those acquired using TIMS/time-of-flight MS instrument platforms as well as numerous drift tube IMS-MS studies published in the literature.  相似文献   

2.
Protein post-translational modifications provide critical proteomic details towards elucidating mechanisms of altered protein function due to toxic exposure, altered metabolism, or disease pathogenesis. Lysine propionylation is a recently described modification that occurs due to metabolic alterations in propionyl-CoA metabolism and sirtuin depropionylase activity. Acrolein is a toxic aldehyde generated through exogenous and endogenous pathways, such as industrial exposure, cigarette smoke inhalation, and non-enzymatic lipid peroxidation. Importantly, lysine modifications arising from propionylation and acroleination can be isobaric – indistinguishable by mass spectrometry – and inseparable via reverse-phase chromatography. Here, we present the novel application of trapped ion mobility spectrometry (TIMS) to resolve such competing isobaric lysine modifications. Specifically, the PTM products of a small synthetic peptide were analyzed using a prototype TIMS – time-of-flight mass spectrometer (TIMS-TOF). In that the mobilities of these propionylated and acroleinated peptides differ by only 1%, a high-resolution mobility analysis is required to resolve the two. We were able to achieve more than sufficient resolution in the TIMS analyzer (~170), readily separating these isobars.  相似文献   

3.
An ion mobility spectrometer that can easily be installed as an intermediate component between a commercial triple-quadrupole mass spectrometer and its original atmospheric pressure ionization (API) sources was developed. The curtain gas from the mass spectrometer is also used as the ion mobility spectrometer drift gas. The design of the ion mobility spectrometer allows reasonably fast installation (about 1 h), and thus the ion mobility spectrometer can be considered as an accessory of the mass spectrometer. The ion mobility spectrometer module can also be used as an independently operated device when equipped with a Faraday cup detector. The drift tube of the ion mobility spectrometer module consists of inlet, desolvation, drift, and extraction regions. The desolvation, drift and extraction regions are separated by ion gates. The inlet region has the shape of a stainless steel cup equipped with a small orifice. Ion mobility spectrometer drift gas is introduced through a curtain gas line from an original flange of the mass spectrometer. After passing through the drift tube, the drift gas serves as a curtain gas for the ion-sampling orifice of the ion mobility spectrometer before entering the ion source. Counterflow of the drift gas improves evaporation of the solvent from the electrosprayed sample. Drift gas is pumped away from the ion source through the original exhaust orifice of the ion source. Initial characterization of the ion mobility spectrometer device includes determination of resolving power values for a selected set of test compounds, separation of a simple mixture, and comparison of the sensitivity of the electrospray ionization ion mobility spectrometry/mass spectrometry (ESI-IMS/MS) mode with that of the ESI-MS mode. A resolving power of 80 was measured for 2,6-di-tert-butylpyridine in a 333 V/cm drift field at room temperature and with a 0.2 ms ion gate opening time. The resolving power was shown to be dependent on drift gas flow rate for all studied ion gate opening times. Resolving power improved as the drift gas flow increased, e.g. at a 0.5 ms gate opening time, a resolving power of 31 was obtained with a 0.65 L/min flow rate and 47 with a 1.3 L/min flow rate for tetrabutylammonium iodide. The measured limits of detection with ESI-MS and with ESI-IMS/MS modes were similar, demonstrating that signal losses in the IMS device are minimal when it is operated in a continuous flow mode. Based on these preliminary results, the IMS/MS instrument is anticipated to have potential for fast screening analysis that can be applied, for example, in environmental and drug analysis.  相似文献   

4.
Trapped ion mobility spectrometry (TIMS) is a versatile high resolution technique that provides the user with the flexibility to adjust the mobility range of interest, duty cycle (up to 100 %), and resolving power (up to ~300) according to the application requirements. Furthermore, TIMS offers the flexibility of operating as either a mobility-selective or conventional ion funnel, thus permitting ion mobility separations to be turned on or off. Here, we extend the flexibility of TIMS by introducing multilinear and nonlinear scanning methods that allow enhanced resolution in user-defined mobility regions. The performance of the new method is demonstrated using a variety of nonlinear scan functions that allow the resolving power to be continuously varied across the mobility spectrum. Further, we demonstrate that mobility analysis can be targeted over disparate regions using a multilinear scan function. In this example, high resolution mobility analysis is targeted on two analytes on opposite ends of a mobility range, while other ions that fall between the regions of interest remain unanalyzed. Using this approach, the resolving power for targeted species was increased by a factor of two over the conventional linear scanning approach (R ~60 versus ~120) without reducing the duty cycle of the TIMS measurement. Importantly, in such an analysis, ions in the untargeted regions are not mobility analyzed, however, they are also not discarded. Rather, these ions are ejected for downstream mass analysis. In this sense, TIMS bridges the gap between dispersive and scanning mobility techniques. That is, TIMS disperses ions according to their elution voltage, however, TIMS can also perform target mobility analyses without eliminating untargeted ions.  相似文献   

5.
A method for the confinement of ions at 760 Torr and room temperature is described. We have recently shown that a cylindrical-geometry high-field asymmetric waveform ion mobility spectrometer (FAIMS), which utilizes an ion separation technique based on the change in ion mobility at high electric fields, focuses ions in two dimensions. This article describes a FAIMS device in which the focusing is extended to three dimensions (i.e. ion trap). Characterization of the ion trap was carried out using a laboratory-constructed time-of-flight mass spectrometer. The half-life of a m/z 380 ion in the trap was determined to be 5 ms.  相似文献   

6.
A hybrid ion mobility-mass spectrometer (IM-MS) incorporating a variable-temperature (80–400 K) drift tube is presented. The instrument utilizes an electron ionization (EI) source for fundamental small molecule studies. Ions are transferred to the IM-MS analyzer stages through a quadrupole, which can operate in either broad transmission or mass-selective mode. Ion beam modulation for the ion mobility experiment is accomplished by an electronic shutter gate. The variable-temperature ion mobility spectrometer consists of a 30.2 cm uniform field drift tube enclosed within a thermal envelope. Subambient temperatures down to 80 K are achievable through cryogenic cooling with liquid nitrogen, while elevated temperatures can be accessed through resistive heating of the envelope. Mobility separated ions are mass analyzed by an orthogonal time-of-flight (TOF) mass spectrometer. This report describes the technological considerations for operating the instrument at variable temperature, and preliminary results are presented for IM-MS analysis of several small mass ions. Specifically, mobility separations of benzene fragment ions generated by EI are used to illustrate significantly improved (greater than 50%) ion mobility resolution at low temperatures resulting from decreased diffusional broadening. Preliminary results on the separation of long-lived electronic states of Ti+ formed by EI of TiCl4 and hydration reactions of Ti+ with residual water are presented.  相似文献   

7.
The capability of a second-generation Nu Instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS) has been evaluated for precise and accurate isotope-ratio determinations of lead. Essentially the mass spectrometer is a double-focusing instrument of Nier-Johnson analyzer geometry equipped with a newly designed variable-dispersion ion optical device, enabling the measured ion beams to be focused into a fixed array of Faraday collectors and an ion-counting assembly. NIST SRM Pb 981, 982, and 983 isotopic standards were used. Addition of thallium to the lead standards and subsequent simultaneous measurement of the thallium and lead isotopes enabled correction for mass discrimination, by use of the exponential correction law and 205Tl/203Tl = 2.3875. Six measurements of SRM Pb-982 furnished the results 206Pb/204Pb = 36.7326(68), 207Pb/204Pb = 17.1543(30), 208Pb/204Pb = 36.7249(69), 207Pb/206Pb = 0.46700(1), and 208Pb/206Pb = 0.99979(2); the NIST-certified values were 36.738(37), 17.159(25), 36.744(50), 0.46707(20), and 1.00016(36), respectively. Direct isotope lead analysis in silicates can be performed without any chemical separation. NIST SRM 610 glass was dissolved and introduced into the MC-ICP-MS by means of a micro concentric nebulizer. The ratios observed were in excellent agreement with previously reported data obtained by TIMS and laser ablation MC-ICP-MS, despite the high Ca/Pb concentration ratio (200/1) and the presence of many other elements at levels comparable with that of lead. Approximately 0.2 microg lead are sufficient for isotope analysis with ratio uncertainties between 240 and 530 ppm.  相似文献   

8.
A dynamic method is applied to measure the mobility of gas-phase ions in the dual ion funnel interface of the electrospray source of a quadrupole orthogonal time-of-flight mass spectrometer. In a new operational mode, a potential barrier was formed in the second ion funnel of the mass spectrometer and then progressively increased. In this region, a flow of gas drags the ions into the mass spectrometer while the electric force applied by the potential barrier decelerates them. Ions with lower mobility can be carried by the gas flow more easily than those with high mobility. Thus, electrical forces can block the more mobile ions more easily. Hence, the electric barrier formed in the ion funnel permits only ions below a certain mobility threshold to enter the mass spectrometer. When the barrier voltage is increased, this threshold moves from high to low mobilities. Ions with mobilities above the threshold cannot enter the mass spectrometer, and their signal decreases to zero. Thus, in a barrier voltage scan, mass spectrometric signals of ions sequentially disappear. Differentiation of these decreasing ion signal curves produces peaks from which an ion mobility spectrum can be reconstructed. Blocking voltages, i.e., the positions of the peaks on the barrier voltage scale are directly related to the mobility of these ions. An internal calibration using ions with known mobility values helps determine the unknown ion mobilities and allows calculation of ionic cross sections.  相似文献   

9.
The highly diverse chemical structures of lipids make their analysis directly from biological tissue sections extremely challenging. Here, we report the in situ mapping and identification of lipids in a freshwater crustacean Gammarus fossarum using matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in combination with an additional separation dimension using ion mobility spectrometry (IMS). The high‐resolution trapped ion mobility spectrometry (TIMS) allowed efficient separation of isobaric/isomeric lipids showing distinct spatial distributions. The structures of the lipids were further characterized by MS/MS analysis. It is demonstrated that MALDI MSI with mobility separation is a powerful tool for distinguishing and localizing isobaric/isomeric lipids.  相似文献   

10.
Ion mobility-mass spectrometry   总被引:3,自引:0,他引:3  
This review article compares and contrasts various types of ion mobility-mass spectrometers available today and describes their advantages for application to a wide range of analytes. Ion mobility spectrometry (IMS), when coupled with mass spectrometry, offers value-added data not possible from mass spectra alone. Separation of isomers, isobars, and conformers; reduction of chemical noise; and measurement of ion size are possible with the addition of ion mobility cells to mass spectrometers. In addition, structurally similar ions and ions of the same charge state can be separated into families of ions which appear along a unique mass-mobility correlation line. This review describes the four methods of ion mobility separation currently used with mass spectrometry. They are (1) drift-time ion mobility spectrometry (DTIMS), (2) aspiration ion mobility spectrometry (AIMS), (3) differential-mobility spectrometry (DMS) which is also called field-asymmetric waveform ion mobility spectrometry (FAIMS) and (4) traveling-wave ion mobility spectrometry (TWIMS). DTIMS provides the highest IMS resolving power and is the only IMS method which can directly measure collision cross-sections. AIMS is a low resolution mobility separation method but can monitor ions in a continuous manner. DMS and FAIMS offer continuous-ion monitoring capability as well as orthogonal ion mobility separation in which high-separation selectivity can be achieved. TWIMS is a novel method of IMS with a low resolving power but has good sensitivity and is well intergrated into a commercial mass spectrometer. One hundred and sixty references on ion mobility-mass spectrometry (IMMS) are provided.  相似文献   

11.
Trapped ion mobility spectrometry (TIMS) is a new high resolution (R up to ~300) separation technique that utilizes an electric field to hold ions stationary against a moving gas. Recently, an analytical model for TIMS was derived and, in part, experimentally verified. A central, but not yet fully explored, component of the model involves the fluid dynamics at work. The present study characterizes the fluid dynamics in TIMS using simulations and ion mobility experiments. Results indicate that subsonic laminar flow develops in the analyzer, with pressure-dependent gas velocities between ~120 and 170 m/s measured at the position of ion elution. One of the key philosophical questions addressed is: how can mobility be measured in a dynamic system wherein the gas is expanding and its velocity is changing? We noted previously that the analytically useful work is primarily done on ions as they traverse the electric field gradient plateau in the analyzer. In the present work, we show that the position-dependent change in gas velocity on the plateau is balanced by a change in pressure and temperature, ultimately resulting in near position-independent drag force. That the drag force, and related variables, are nearly constant allows for the use of relatively simple equations to describe TIMS behavior. Nonetheless, we derive a more comprehensive model, which accounts for the spatial dependence of the flow variables. Experimental resolving power trends were found to be in close agreement with the theoretical dependence of the drag force, thus validating another principal component of TIMS theory.
Graphical Abstract ?
  相似文献   

12.
13.
The recent development of miniature ion trap mass spectrometer systems in the last ten years is reviewed in this paper. These instruments adopt different atmospheric pressure interfaces (APIs), which are membrane inlets (MIs), discontinuous atmospheric pressure interface (DAPI) and continuous atmospheric pressure interface (CAPI).  相似文献   

14.
An ion mobility cell of a novel type was coupled to an orthogonal injection time-of-flight (TOF) mass spectrometer. The mobility cell operates at low-pressure and contains a segmented RF ion guide providing an axial electric field that drives the ions towards the exit. A flow of gas is arranged inside the ion guide in such a way that the gas drag counteracts the force exerted by the axial field. Ions with different mobility coefficients can be scanned out of the ion guide by ramping the axial field strength. The ions can be analyzed intact or fragmented in a collision cell before introduction into an orthogonal TOF mass spectrometer. An ion source with matrix assisted laser desorption/ionization (MALDI) was attached to the instrument. The setup was evaluated for the analysis of peptide and protein mixture, with sequential fragmentation of multiple precursor ions from a protein digest and with mobility separation of fragment ions formed by in-source fragmentation of pure peptides. The mobility resolution for peptides was observed to be three times higher than the theoretical resolution predicted for a classical mobility setup with similar operating conditions (pressure, field strength, and length).  相似文献   

15.
GEMS is a new type of time-of-flight mass spectrometer based on an electrostatic energy analyzer. Mass resolution equals the energy analyzer kinetic energy resolution, which is set by its slit size. In GEMS, monochromatic ions enter the entrance slit at random times, and the gated ion deflection produced by the electrostatic field in the analyzer rejects ions that are inside the analyzer at gate onset, detecting those entering the analyzer after gate onset. This provides mass separation while overcoming the temporal and spatial spread problems typical of TOF applications. Paradoxically, GEMS works because all ion masses follow identical trajectories. GEMS is easily multiplied into two-dimensional arrays to increase sensitivity in space applications, requires relatively low voltages, and uses only a few electrical connections. Thus, it is easy to package GEMS as a small, low-power instrument for applications in harsh environments. A disadvantage of GEMS is that its output is the integral of the TOF spectrum and the derivative of the raw data must be taken, a procedure that is likely to add noise. A version of GEMS detecting un-deflected ions (u-GEMS) has been tested to demonstrate the time-integrated feature of the raw data but without the benefit of energy analysis. This paper describes GEMS implemented with the small deflection energy analyzer (SDEA), a compact version of the parallel plate energy analyzer. SDEA is described both analytically and with ion trajectory simulations using the ion trajectory simulation software SIMION; the results are then used to describe GEMS and compute its performance.  相似文献   

16.
17.
Electrophoretic mobility control (EMC) was used to alleviate the adverse effect of the ion-pairing agent heptafluorobutyric acid (HFBA) in the liquid chromatography–electrospray ionization mass spectrometry (LC-ESI-MS) analysis of aminoglycosides. Aminoglycosides separated by LC were directed to a connecting column before their detection via ESI. Applying an electric field across the connecting column caused the positively charged aminoglycosides to migrate toward the mass spectrometer whereas the HFBA anions remained in the junction reservoir, thus alleviating the ion suppression caused by HFBA. To accommodate the flow rate of a narrow-bore column, minimize the effect of electrophoretic mobility on separation, and facilitate the operation, an integrated EMC device with a split design was fabricated. With the proposed EMC device, the signals of aminoglycosides were enhanced by a factor of 5–85 without affecting the separation efficiency or elution order. For the analysis of aminoglycosides in bovine milk, the proposed approach demonstrates a sensitivity that is at least 10 times below the maximum residue limits set by most countries.  相似文献   

18.
Electron transfer through gas phase ion-ion reactions has led to the widespread application of electron- based techniques once only capable in ion trapping mass spectrometers. Although any mass analyzer can in theory be coupled to an ion-ion reaction device (typically a 3-D ion trap), some systems of interest exceed the capabilities of most mass spectrometers. This case is particularly true in the structural characterization of glycosaminoglycan (GAG) oligosaccharides. To adequately characterize highly sulfated GAGs or oligosaccharides above the tetrasaccharide level, a high resolution mass analyzer is required. To extend previous efforts on an ion trap mass spectrometer, negative electron transfer dissociation coupled with a Fourier transform ion cyclotron resonance mass spectrometer has been applied to increasingly sulfated heparan sulfate and heparin tetrasaccharides as well as a dermatan sulfate octasaccharide. Results similar to those obtained by electron detachment dissociation are observed.  相似文献   

19.
Ion mobility spectrometry detection for gas chromatography   总被引:2,自引:0,他引:2  
The hyphenated analytical method in which ion mobility spectrometry (IMS) is coupled to gas chromatography (GC) provides a versatile alternative for the sensitive and selective detection of compounds after chromatographic separation. Providing compound selectivity by measuring unique gas phase mobilities of characteristic analyte ions, the separation and detection process of gas chromatography-ion mobility spectrometry (GC-IMS) can be divided into five individual steps: sample introduction, compound separation, ion generation, ion separation and ion detection. The significant advantage of a GC-IMS detection is that the resulting interface can be tuned to monitor drift times/ion mobilities (as a mass spectrometer (MS) can be tuned to monitor ion masses) of interest, thereby tailoring response characteristics to fit the need of a given separation problem. Because IMS separates ions based on mobilities rather than mass, selective detection among compounds of the same mass but different structures are possible. The most successful application of GC-IMS to date has been in the international space station. With the introduction of two-dimensional gas chromatography (2D-GC), and a second type of mobility detector, namely differential mobility spectrometry (DMS), GC prior to mobility measurements can now produce four-dimensional analytical information. Complex mixtures in difficult matrices can now be analyzed. This review article is intended to provide an overview of the GC-IMS/DMS technique, recent developments, significant applications, and future directions of the technique.  相似文献   

20.
A common idea is that some dishonest businessmen often disguise Citrus reticulata Blanco varieties as Citrus reticulata ‘Chachi’, which places consumers at risk of economic losses. In this work, we combined high-resolution ion mobility (U-shaped mobility analyzer) with high-resolution mass spectrometry to rapidly distinguish Citrus reticulata ‘Chachi’ from other Citrus species. The samples were analyzed directly through simple extraction and the analytes were separated in one second. It only took about 1 min to perform a cycle of sample analysis and data acquisition. The results showed that polymethoxylated flavones and their isomers were separated easily by the ion mobility analyzer and preliminarily identified according to the accurate mass. Moreover, the collision cross-section values of all analytes, which could be used as auxiliary parameters to characterize and identify the compounds in the samples, were measured. Twenty-four samples were grouped as two clusters by multivariate analysis, which meant that Citrus reticulata ‘Chachi’ could be effectively differentiated. It was confirmed that the developed method had the potential to rapidly separate polymethoxylated flavones and distinguish between Citrus reticulata ‘Chachi’ and other Citrus reticulata Blanco varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号