首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳(Co-PPy-C)载Pt催化剂(Pt/Co-PPy-C),其中Pt的总质量占20%.利用透射电镜(TEM)、光电子射线能谱分析(XPS)和X射线衍射(XRD)研究了催化剂的结构,用循环伏安(CV)、线性扫描伏安(LSV)等方法考察了其电化学活性及氧还原反应(ORR)动力学特性及耐久性.Pt/Co-PPy-C电催化剂的金属颗粒直径约1.8 nm,略小于商用催化剂Pt/C(JM)颗粒尺寸(约2.5 nm);催化剂在载体上分散均匀,粒径分布范围较窄.Pt/Co-PPy-C的电化学活性比表面积(ECSA)(75.1 m2·g-1)高于商用催化剂的ECSA(51.3 m2·g-1).XPS测试表明,自制催化剂表面的Pt主要以零价形式存在.而XRD结果显示,自制催化剂中Pt(111)峰最强,Pt主要为面心立方晶格.Pt/Co-PPy-C具有与Pt/C(JM)相同的半波电位;在0.9 V下,Pt/Co-PPy-C的比活性(1.21 mA·cm-2)高于商用催化剂的比活性(1.04 mA·cm-2),表现出更好的ORR催化活性.动力学性能测试表明催化剂的ORR反应以四电子路线进行.CV测试1000圈后,Pt/Co-PPy-C和Pt/C(JM)的ECSA分别衰减了13.0%和24.0%,可见自制催化剂的耐久性高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.  相似文献   

2.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳(Co-PPy-C)载Pt 催化剂(Pt/Co-PPy-C),其中Pt 的总质量占20%. 利用透射电镜(TEM)、光电子射线能谱分析(XPS)和X射线衍射(XRD)研究了催化剂的结构,用循环伏安(CV)、线性扫描伏安(LSV)等方法考察了其电化学活性及氧还原反应(ORR)动力学特性及耐久性. Pt/Co-PPy-C电催化剂的金属颗粒直径约1.8 nm,略小于商用催化剂Pt/C(JM)颗粒尺寸(约2.5 nm);催化剂在载体上分散均匀,粒径分布范围较窄. Pt/Co-PPy-C的电化学活性比表面积(ECSA)(75.1 m2·g-1)高于商用催化剂的ECSA(51.3 m2·g-1). XPS测试表明,自制催化剂表面的Pt 主要以零价形式存在. 而XRD结果显示,自制催化剂中Pt(111)峰最强,Pt 主要为面心立方晶格. Pt/Co-PPy-C具有与Pt/C(JM)相同的半波电位;在0.9 V下,Pt/Co-PPy-C的比活性(1.21 mA·cm-2)高于商用催化剂的比活性(1.04 mA·cm-2),表现出更好的ORR催化活性.动力学性能测试表明催化剂的ORR反应以四电子路线进行. CV测试1000 圈后,Pt/Co-PPy-C和Pt/C(JM)的ECSA 分别衰减了13.0%和24.0%,可见自制催化剂的耐久性高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.  相似文献   

3.
通过1700 ℃高温处理XC-72CB得到石墨化碳黑(GCB), 并采用酸处理对GCB碳载体进行官能团修饰. 透射电子显微镜(TEM)、 X射线粉末衍射(XRD)和拉曼光谱的结果显示, 酸处理后GCB的石墨化程度增加; N2吸附-脱附结果证明GCB比表面积减小, 微孔数量减少; 热重分析结果表明, GCB热稳定性增强; 红外光谱和拉曼光谱结果显示, GCB表面引入了含氧官能团, 并同时保持了GCB的有序化结构. 采用循环伏安(CV)法和线性扫描伏安(LSV)法测试了不同预处理后催化剂的电化学性能, 表明其电化学活性表面积(ECSA, 75.25 m2/g)和质量比活性(MA, 0.093 A/mg)均高于商业Pt/C(JM)催化剂. TEM结果表明, 使用经过浓硫酸和浓硝酸混合酸处理的GCB(简称OGCB)作为载体得到的Pt/OGCB平均粒径为2.28 nm, 略小于商业Pt/C(JM)催化剂(约2.5 nm); 经5000周电化学循环伏安测试后, Pt/OGCB的电化学活性表面积衰减17.3%, 质量比活性衰减29.5%, 而Pt/C(JM)的ECSA衰减达到25.1%, MA衰减达到42.5%.  相似文献   

4.
采用改进的多元醇法制备了PtNi(原子比1∶1)质量分数为60%的高金属载量碳载PtNi合金(PtNi/C), 通过在450 ℃下退火处理获得了碳载PtNi金属间化合物氧还原电催化剂. 该催化剂对氧还原的质量比活性和面积比活性分别是商业化Pt/C(JM Pt/C)催化剂的1.66和2.3倍; 并且加速耐久性测试后PtNi金属间化合物催化剂的质量比活性仍与Pt/C的初始性能相当, 耐久性得到了大幅提升. PtNi/C金属间化合物催化剂氧还原活性和稳定性的提高归因于PtNi的有序原子排布结构及催化剂表面零价金属含量的提高.  相似文献   

5.
为提高PtCo/C合金催化剂的电化学性能,采用微波法合成铂钴锰催化剂前驱体,经高温热处理形成合金,最后通过酸处理得到铂钴锰合金催化剂(PtCoMn/C)。电化学测试结果表明:适量锰的添加可提升PtCo/C催化剂的活性和耐久性。PtCo Mn/C催化剂在0.9 V(vs RHE)电压下的质量比活性(MA)达到0.666 A·mgPt-1,是传统Pt/C的2.66倍,是PtCo/C催化剂的1.30倍。在30 000圈催化剂加速耐久性测试中,PtCoMn/C合金催化剂的电化学活性面积(ECSA)和质量比活性(MA)仅下降6.9%和27.1%,均远低于Pt/C催化剂。  相似文献   

6.
用浸渍、烧结方法制备了不锈钢网(3×15cm)负载催化剂:由溶胶-凝胶法制备含(400目)电气石粉的二氧化钛催化剂,并与直接混合电气石粉、P-25 TiO2的复合负载催化剂进行对照;利用X射线衍射、扫描电镜、透射电镜等表征催化剂结构;研究了催化剂在反应器(14L)中由20W紫外杀菌灯照射下光催化氧化去除气相甲苯污染物的效果.结果表明,在制溶胶过程中添加微米级电气石粉,得到催化剂粒径较小,其负载量和催化活性均有提高,平均催化比活性达到1.90mg·m-2·min-1或0.11mg·g-1·min-1,该催化剂在静态条件下反应4h,对初始浓度为180mg·m-3和70mg·m-3的甲苯去除率分别达到87%和82%;而同样的高初始浓度下,负载P-25仅可去除21%甲苯,复合负载P-25、电气石可去除58%甲苯,其催化比活性达到1.35mg·m-2·min-1或0.18mg·g-1·min-1.  相似文献   

7.
采用乙二醇还原法,利用不同金属前驱体(CuSO_4/CuCl_2、K_2PtCl_4/H_2PtCl_6)制备了铂铜总质量分数为20%的四种PtCu/C催化剂,并通过透射电子显微镜(TEM)、X射线衍射(XRD)、循环伏安法(CV)和线性扫描伏安法(LSV)对催化剂进行物相结构表征及电化学性能测试。结果表明,以CuSO_4和K_2PtCl_4为前驱体组合制备出的PtCu/C催化剂性能最优。所制备的PtCu/C催化剂金属颗粒平均粒径为2.3nm,粒径范围窄,在碳载体上负载均匀;电化学活性面积(ECSA)达到73.0m2/gPt,质量比活性(MA)为126.65mA/mgPt,均优于商业Pt/C催化剂。  相似文献   

8.
采用脉冲微波辅助化学还原法制备了钴-聚吡咯-碳载Pt催化剂(Pt/Co-PPy-C),并将其作为阴极催化剂,组装单电池。考察了电池运行温度和氢气/空气计量比对单电池性能的影响,并与商业Pt/C催化剂进行了耐久性实验比较。 结果表明,运行温度为70 ℃,氢气与空气的计量比为1.2:2.5时单电池性能最佳。600 mA/cm2恒电流稳定运行150 h耐久性测试中,以Pt/Co-PPy-C为阴极催化剂的单电池平均电压衰退率为0.119 mV/h,是商业Pt/C催化剂的26%。耐久性测试前后,单电池的阴极电荷传递阻抗为7.176和8.767 Ω,均比商业Pt/C催化剂阻抗小;Pt颗粒粒径从2.46 nm增长到3.18 nm,均小于商业Pt/C催化剂的粒径。这表明,以Pt/Co-PPy-C催化剂为阴极催化剂制备的单电池性能优良,在质子交换膜燃料电池中有广泛的应用前景。  相似文献   

9.
采用电化学置换法,在VulcanXC-72表面制备得到了活性高和分散性好的纳米Ptshell-Nicore电催化剂.该方法先以NaH2PO2为还原剂,化学沉积得到Ni核,Pt在Ni核表面通过原位置换形成Ni-Pt类核壳型结构.通过透射电镜(TEM)、X射线衍射(XRD)、紫外-可见光光谱(UV-Vis)和循环伏安(CV)测试证明了Pt壳层完全包覆在Ni核的表面.电化学氢吸/脱附测试结果显示,Ptshell-Nicore/XC-72的电化学活性面积为Pt/C(JM)的1.2倍,而其理论Pt担载量只为Pt/C(JM)的40%.这表明,核壳型Ni-Pt纳米粒子可以显著提高Pt的催化活性和利用率.  相似文献   

10.
采用两步还原法制得Co@Pt/C核壳结构催化剂, 其中Co与Pt 的总质量分数为20%. 通过改变金属前驱体的用量, 制备了不同Co:Pt 原子比的Co@Pt/C 催化剂, 以20% (w) Co@Pt(1:1)/C 与20% (w) Co@Pt(1:3)/C 表示. 采用透射电镜(TEM)、光电子射线能谱分析(XPS)、循环伏安(CV)、线性扫描伏安(LSV)等方法考察了其结构与性能, 并与实验室早先制备的40% (w) Co@Pt/C 催化剂进行了比较. 自制20% Co@Pt(1:1)/C 与20% Co@Pt(1:3)/C 催化剂的金属颗粒直径约为2.2-2.3 nm, 在碳载体上分散均匀, 粒径分布范围较窄, 电化学活性比表面积(ECSA)分别为56 和60 m2·g-1, 均超过商用催化剂20% Pt/C(E-tek) (ECSA=54 m2·g-1). 20%Co@Pt(1:1)/C 与20% Co@Pt(1:3)/C 的半波电位相较于40% Co@Pt(1:1)/C 和40% Co@Pt(1:3)/C 均向正向移动, 表现出更好的氧还原(ORR)催化活性, 并有望降低催化剂的成本, 在质子交换膜燃料电池领域表现出良好的应用前景.  相似文献   

11.
燃料电池作为一种清洁高效的能量转换装置,被认为是构建未来社会可再生能源结构的关键一环。不同于质子交换膜燃料电池(PEMFC),碱性聚合物电解质燃料电池(APEFC)的出现使非贵金属催化剂的使用成为可能,因而受到了日益广泛的关注和研究。APEFC的关键结构是膜电极,主要由聚合物电解质膜和阴阳极(含催化层、气体扩散层)组成,膜电极是电化学反应发生的场所,其优劣直接决定着电池性能的好坏。因此,基于现有的碱性聚合物电解质及催化剂体系,如何构筑更加优化的膜电极结构,使APEFC发挥出更高的电池性能是亟待开展的研究。本文首先通过模板法在碱性聚合物电解质膜的表面构建出有序的锥形阵列,再将具有阵列结构的一侧作为阴极来构筑膜电极,同时,作为对比,制备了由无阵列结构的聚合物电解质膜构筑而成的膜电极,最后对基于两种不同膜电极的APEFC的电化学性能进行了对比研究。实验结果表明,锥形阵列结构可以将APEFC的峰值功率密度由1.04 W·cm-2显著提高到1.48 W·cm-2,这主要归因于在APEFC的阴极侧具有锥形阵列结构的聚合物电解质膜的亲水性的提升和催化剂电化学活性面积的增加。本工作为碱性聚合物电解质燃...  相似文献   

12.
Three-dimensionally (3D) ordered mesoporous carbon sphere arrays (OMCS) are explored to support high loading (60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction (MOR). The OMCS has a unique hierarchical nanostructure with ordered large mesopores and macropores that can facilitate high dispersion of the Pt nanoparticles and fast mass transport during the reactions. The prepared Pt/OMCS exhibits uniformly dispersed Pt nanoparticles with an average size of 2.0 nm on the mesoporous walls of the carbon spheres. The Pt/OMCS catalyst shows significantly enhanced specific electrochemically active surface area (ECSA) (73.5 m2 g-1) and electrocatalytic activity (0.69 mA cm-2) for the MOR compared with the commercial 60 wt% Pt/C catalyst.  相似文献   

13.
催化剂的酸性和氧化还原性在催化生物质平台分子转化过程中起着非常重要的作用,杂多酸具有较强的酸性以及优良的氧化还原性,因而杂多酸在生物质催化转化领域备受关注。本文利用溶胶-凝胶法和硅烷化方法将杂多酸催化剂封装在二氧化硅载体内部,随后以傅立叶红外光谱、X-射线衍射仪、热重分析仪、透射电子显微镜、扫描电镜等手段对合成的材料进行了表征。红外光谱表明杂多酸在催化剂中保持了其完整结构,X-射线衍射表明杂多酸高度分散在二氧化硅载体上,电镜表征显示催化剂呈球形纳米颗粒形貌。基于以上表征结果,我们将包覆的杂多酸催化剂应用于甘油氧化,在以过氧化氢为氧化剂,温和反应条件下,合成的材料对甘油氧化具有良好的催化活性,其中对甲酸的选择性大约为70%,对乙醇酸的选择性大约为27%。硅烷化过程对于催化剂循环起着重要的作用,单纯二氧化硅的比表面积为287 m2·g-1,二氧化硅包覆杂多酸经过硅烷化后,其比表面积降为245 m2·g-1,而且孔径也有所降低。单纯二氧化硅与水的接触角为0°,而二氧化硅包覆的杂多酸在硅烷化之后的催化剂具有很强的疏水性,与水的接触角为137°。根据这些催化剂表征数据说明硅烷化过程不仅可以显著提高催化剂的疏水性,而且同时限制了载体孔径,阻止杂多酸流失到反应体系中,与传统的浸渍法将杂多酸负载在二氧化硅载体上得到的催化剂相比,催化剂的循环利用性显著提高。反应后的催化剂结构与新鲜催化剂相比,并没有发生明显变化。催化剂经过一次循环后,表面暴露了更多的活性中心,活性稍有提高。催化剂在反应体系中加入强质子酸可以显著提高反应的催化性能,揭示了Bronsted酸在甘油氧化过程中对甘油分子的活化起着重要的作用。  相似文献   

14.
采用同轴静电纺丝法制备了碳包覆纳米SnO2中空纤维超级电容器电极材料.利用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和比表面积分析仪(BET)对材料进行表征.结果表明,纤维呈现中空形貌,平均直径为1 μm; SnO2颗粒均匀分布于碳壳结构中,平均粒径为3-15 nm.材料的比表面积为565 m2·g-1.在三电极体系中,当电流密度为0.25 A·g-1时,电极材料的比容量达397.5 F·g-1;在1.0A·g-1电流密度下,充放电循环3000次后比容量仍保持为初始值的88%.在对称型双电极体系中,电流密度为0.25 A·g-1时,电极材料的比容量达162.0 F·g-1,在1.0 A·g-1电流密度下,充放电循环3000次后比容量仍保持为初始值的84%.  相似文献   

15.
使用新型含氮聚合物席夫碱为炭源, SBA-15为模板,通过纳米铸型法原位合成微孔-中孔-大孔串联的多级孔富氮炭材料.材料的比表面积为752 m2·g-1,孔容0.79 cm3·g-1; X光电子能谱分析表明炭材料中的氮含量高达7.85%(w).将所制备的多孔炭材料应用于CO2的吸附分离,发现炭材料的微孔发挥主导作用,表面氮掺杂发挥辅助作用.在两者的协同作用下, CO2吸附量在常压、273 K下可达97 cm3·g-1, CO2/N2和CO2/CH4的分离比(摩尔比)分别为7.0和3.2,低压亨利吸附选择性分别为23.3和4.2.采用Toth模型对单组分平衡吸附进行拟合,并根据理想溶液吸附理论(IAST)预测双组分CO2/N2和CO2/CH4混合气体的分离选择性分别为40和18.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号