首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
介绍了HL-2A装置上用于二级加热系统的PSM高压脉冲电源的反馈控制系统.该电源控制系统以DSP+FPGA作为控制核心,输出112路驱动脉冲,以此来控制112个IGBT的通断,包括了驱动、通信、计算、反馈等部分,使电源系统输出稳定高压.设计了远程通信系统,其中基于VB的上位机与控制系统之间采用CAN总线技术来实现电源系统的相关参数设定及传输.DSP与FPGA实现了计算、反馈等功能.完成了相关的代码编写与系统测试.实验测试结果表明,该控制系统实现了高压电源的稳定输出,满足了实验的需求.  相似文献   

2.
为了满足 HL-2A 装置二级加热系统的高压电源系统的要求,开发了脉冲步进调制(PSM)高压脉冲电 源控制系统。PSM 电源控制系统采用数字信号处理器(DSP)和现场可编程门阵列器件(FPGA)组合控制方式,总计 输出 112 路脉冲。DSP 芯片实现计算、反馈、远程通信等功能,FPGA 主要负责与 DSP 的数据传输及 112 路脉冲 输出的时序控制功能。利用控制器局域网络(CAN)总线实现上位机与 DSP 之间的远程通信功能,上位机采用 LABVIEW 软件实现相关参数的设定与远程通讯。测试结果表明,该控制系统能够实现远程通讯功能,具备快速 的反馈控制功能,满足实验要求。  相似文献   

3.
介绍了HL-2A 上基于脉冲步进阶梯调制(PSM)技术的高压电源控制系统的研究。控制系统以数字信号处理+现场可编程门阵列(DSP+FPGA)为架构,控制112 个每秒采样(SPS)模块,按照一定的控制方式使电源输出稳定的电压。DSP 负责数据传输、通讯、控制算法等;FPGA 利用其强大的逻辑功能输出所需的脉冲。通过对程序的编写、仿真和调试,实验结果表明该控制系统的特性达到了设计要求。  相似文献   

4.
兰州重离子冷却储存环束流踢轨控制系统   总被引:4,自引:2,他引:2  
 踢轨系统是一种以快速脉冲方式工作的以高压大电流驱动的特殊二极磁铁系统,用于环形加速器的束流注入和引出。简要介绍了在兰州重离子加速器冷却储存环上采用ARM+DSP+FPGA技术实现踢轨控制时序的方法,时间控制精度达ns量级。ARM主要控制信号的网络通讯,踢轨系统的时序精度控制主要由DSP结合FPGA技术完成。远程时序控制信号均通过光纤传输,同时对踢轨电源的电压给定采用信号隔离器及铁氧体以抑制脉冲干扰。经现场测试,系统可以安全稳定地实现束流踢轨的控制要求。  相似文献   

5.
为了实现高压等离子体放电的研究,研制了一套满足负载要求的脉冲电源系统。该电源系统采用脉冲电容型电源拓扑方案并结合理论计算,为实际电源研制提供关键的指导方案。为了更好地进行器件参数选型,采用PSpice软件搭建仿真模型,通过响应波形分析得到满足系统要求的器件参数。此外,为该电源系统研制一套满足等离子体放电要求的控制系统。该控制系统采用通信方式为串口通信、Labview搭建上位机界面以及FPGA完成下位机的逻辑系统配置,系统简单高效。  相似文献   

6.
双极性脉冲电源是磁控溅射系统中的关键设备之一。根据铌溅射处理装置的技术要求,研制了一套输出电压0~800 V可调、脉冲宽度20~200 μs可调、频率0~60 Hz可调、脉冲电流最大幅值约150 A的双极性脉冲电源,分别给出了该电源在水电阻负载和等离子体负载下的实验结果。设计上采用DSP控制开关电源的方式对储能电容器进行恒流充电;综合应用FPGA,PLC及触摸屏组成人机交互系统,控制输出光脉冲信号,经负压偏置驱动后使桥式结构的脉冲形成网络产生正负交替双极性脉冲。通过大量实验论证,该电源解决了等离子体负载放电打弧等问题,达到了理想的溅射效果,满足了指标要求。  相似文献   

7.
饶俊峰  李成建  李孜  姜松 《强激光与粒子束》2019,31(3):035001-1-035001-5
设计了一款全固态高重频高压脉冲电源,主电路采用以IGBT为主开关的半桥式固态Marx电路,驱动电路采用磁芯隔离带负压偏置的同步驱动方案,并由FPGA提供充放电控制信号和故障诊断、保护。该方案既可实现对多级电容的低阻抗的快速并联充电控制,又可实现截尾功能以加快脉冲后沿获得方波脉冲,且可实现百μs以上的宽脉冲输出,可用来产生高压脉冲电场。此外,该电源还可在突发模式下输出脉冲个数和频率均可调的多个高频脉冲系列。实验表明,该输出电压幅值可高达40 kV,输出峰值电流可达100 A,重频可达30 kHz,上升沿和下降沿均低于100 ns,突发模式下重频可高达200 kHz。所设计的脉冲电源输出参数连续可调,且体积小巧。  相似文献   

8.
针对重离子加速器部分电源的控制要求,进行了分析研究,提出并实现了一种实时、高效、多功能的控制系统。该系统基于数字信号处理器(DSP)和两片现场可编程门阵列(FPGA)芯片相结合的核心处理构架,在系统后端利用PXI总线接口配合FPGA来与工控机箱中的系统控制器和其他控制组件进行大批量数据交互;系统前端利用直接数字频率合成器、模数转换器和数模转换器等器件结合DSP和FPGA中的控制算法及相应控制机制来实现对不同电源控制参数的处理和功率的输出;平台中两组光纤模块也与FPGA相配合实现对同步触发事例等实时数据的收发和调试。  相似文献   

9.
研制了80 kV可调节高压脉冲方波电源系统以对ZnO样品特性进行测试,实现电源输出脉宽、重复频率、运行时间可调。系统采用人工形成线、脉冲变压器加可调节负载电阻等技术路线,实现了高压方波脉冲的输出;采用高速数据I/O卡产生序列脉冲信号控制两个火花间隙开关的通断,对人工形成线形成的方波进行截尾,实现了输出方波宽度可调;利用Labview中的图形化控件,编写友好简洁的计算机控制界面;采用光电隔离、光纤传输和供电隔离等一系列措施,提高触发控制系统的抗干扰能力。实验结果表明,最终电源输出电压幅值超过80 kV,输出方波脉冲宽度超过25 s,脉冲前沿小于0.7 s,并且输出电压幅值可调,脉冲宽度在输出范围内可连续调节。利用该电源对ZnO压敏电阻样品进行了测试,得到了较好的ZnO压敏电阻非线性伏安特性曲线。  相似文献   

10.
为了满足脉冲电场消融的应用需求,解决单极性脉冲电场分布不均匀的问题,研制了一台基于半桥结构的主电路、具有纳秒级前沿的高重复频率双极性亚微秒高压脉冲电源。该脉冲电源由FPGA提供控制信号,经过驱动芯片放大控制信号后,利用光耦隔离驱动多个SiC MOSFET。驱动电路所需元器件较少,信号控制时序简单,可提供负压偏置,使开关管可靠关断,提高了电路的抗电磁干扰能力,使电源能稳定运行。通过电阻负载实验,对比分析了不同栅极电阻对驱动电压的影响,驱动电压上升沿时间越短对应的双极性高压脉冲前沿越快。实验结果表明:所设计的高频双极性脉冲电源在100Ω纯阻性负载上能够稳定产生重复频率双极性纳秒脉冲,输出电压0~±4 kV可调,脉宽0.2~1.0μs可调,正负脉冲相间延时0~1 ms可调,上升沿和下降沿60~150 ns之间。该双极性脉冲电源电路设计结构紧凑,能满足应用的参数需求。  相似文献   

11.
分析并设计了分压器的参数,采用高频无感釉膜电阻制作分压器,与基于压频转换的光纤隔离技术相结合,组成了HL-2A用高压电源测量系统。同时将数字信号处理芯片用于光纤转换环节,实现压频型A/D转换,简化线路,提高数据传输速度和信号干扰能力。该高压测量系统已运用于HL-2A装置的长脉冲(5 s)放电实验,结果表明:该系统不仅实现了DC 80 kV高压电源的高低电位完全隔离,而且所测量电压波形真实反映了电源的输出,为反馈系统和保护系统提供了实时电压数据信号。  相似文献   

12.
介绍了基于PLC的EAST LHCD -35kV/5.6MW高压电源反馈控制系统设计。系统采用工控微机(PC)和PLC对高压电源进行控制,采用PID控制算法实现高压电源电压的反馈控制。操作系统是基于QNX实时操作系统。实验结果证明,该反馈控制系统具有良好的控制性和可靠的保护性。  相似文献   

13.
武靖昊  刘庆想  张政权  王邦继  李伟 《强激光与粒子束》2018,30(5):053006-1-053006-5
为提高电源在电网非理想输入情况下工作的适应性,采用解耦双同步坐标系下的三相锁相环,能够获取电网电压的相位与频率信息,并通过FIR滤波环节提取输入线电压的基波幅值,及时准确地为电源提供控制参数。建立了Matlab/Simulink仿真模型,在三相输入不平衡、频率变化、电压畸变等情况下进行仿真,并基于DSP2812芯片编写了控制程序进行测试。仿真与实验结果表明:在各种电网输入情况下,该方法都能够准确提取输入线电压的幅度、相位以及频率信息,为电源的良好运行提供保障。  相似文献   

14.
针对激光器电源的应用环境,设计了基于DSP的电源控制系统,使电源具备输出电压0~30 kV可调,重复频率1~100 Hz可调,并提供了远程计算机控制和本地液晶键盘控制两种控制方式。设计了过压、过流、过热、超时等多重保护电路和电源的外触发控制接口。对激光器电源控制系统进行相应的电磁兼容设计,并使用光纤控制及反馈系统,有效地增强了电源控制系统的抗干扰性能。将该电源用于激光器的发光试验,通过调节激光器电源的各种控制参数,可以使激光器的出光强度、出光功率、出光时间等得到调节,从而为各种研究工作提供便利。实验结果表明在进行激光器发光实验时,该电源能够输出幅值稳定、频率符合要求的重频脉冲高压,最高输出电压可达到30 kV,充放电频率可达到100 Hz。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号