首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Schmitt JM  Xiang SH 《Optics letters》1998,23(13):1060-1062
We have observed that cross-polarized backscatter measured by optical coherence tomography of human skin in vivo is surprisingly strong. We identify and give evidence of its main origins: single scattering from nonspherical particles and multiple scattering by particles with sizes much larger than a wavelength. Our findings show that depolarized light scattered by dense large-diameter particles maintains a high degree of temporal coherence and that differential-polarization imaging improves contrast between particles of different sizes.  相似文献   

2.
室内空气中颗粒状污染物的计数技术   总被引:5,自引:0,他引:5  
室内环境空气污染对人体健康影响很大。文中指出影响人体健康的致病因子,并详细分析先进的光散射理论,在此基础上建立异轴采光数学模型,分析单个微粒的光通量和粒径之间的关系。鉴于单个颗粒的散射光信号很弱,本文提出一种方法,把光辉器的内腔(开放腔)作为颗粒注入区,利用激光器的内腔功率谱密度远大于腔外功率密度的特点,结合先进的激光散射理论,对空气中的颗粒进行计数的粒径分档。实践证明,该方法对较小粒径的颗粒检测  相似文献   

3.
The effect of scattering of different multiplicity on polarization characteristics of scattered light is studied by the Monte Carlo computer simulation technique. The scattering multiplicity distribution versus the direction of scattering and dimensions of the scattering system is obtained for monodisperse systems of spherical particles of different size. The angular dependences of the elements of the light-scattering matrix (LSM) are calculated. It is shown that in a system of spherical particles, specific features of the LSM structure associated with multiple scattering have much in common with similar features of the LSM in systems of nonspherical particles under conditions of single scattering. The angular dependences of the degree of depolarization of the scattered light are studied.  相似文献   

4.
Light scattering by non‐axisymmetric particles is commonly needed in particle characterization and other fields. After much work devoted to volume discretization methods to compute scattering by such particles, there is renewed interest in the T‐matrix method. We extended the null‐field method with discrete sources for T‐matrix computation and implemented the superellipsoid shape using an implicit equation. Additionally, a triangular surface patch model of a realistically shaped particle can be used for scattering computations. In this paper some exemplary results of scattering by non‐axisymmetric particles are presented.  相似文献   

5.
Multiple scattering of incoherent polarized light propagating through a random medium comprised of spheroidal Rayleigh particles is studied using Monte Carlo simulations. Two approaches are taken for the implementation of the simulation: the first uses individual realizations of particle orientation and the second, an accelerated method, averages over the particle orientation. These different methods produce results that are indistinguishable within statistical errors. The depolarization of light is examined in both transmission and backscatter for media comprised of spheroids of different polarizability ratios. In media containing spheroidal particles the depolarization is greater than that for spherical particles. Media containing prolate spheroids are more depolarizing than media comprising oblate particles of the same polarizability ratio. The extra depolarization due to asphericity is much less pronounced in the multiple scattering regime than for single scattering.  相似文献   

6.
Studies of the physical parameters that influence the single scattering properties of a size distribution of small particles in random orientation are fundamental in understanding the origin of the observed dependence of the scattering matrix elements on the scattering angle. We present results of extensive calculations of the single scattering matrices of small nonspherical particles performed by a computational model based on the Discrete-Dipole Approximation. We have particularly studied the sensitivity of the size-averaged scattering properties at visible wavelengths of nonspherical, randomly oriented absorbing particles considering changes in shape, porosity and refractive index. These studies have importance regarding the inversion of physical properties of small particles as measured in the laboratory and the dust properties in various astrophysical and atmospherical environments. We have found that size distributions of randomly oriented irregular particles of different shape, including large aspect ratio particles, show similar scattering matrix elements as a function of the scattering angle, in contrast with the pattern found for regularly shaped particles of varying axis ratios, for which the scattering matrix elements as a function of the scattering angle show much larger differences among them. Regarding porosity, we have found a very different pattern in the scattering matrix elements for an ensemble of compact and porous particles. In particular, the linear polarization for incident unpolarized light produced by compact and absorbing particles of large size parameter tend to mimic the pattern found for large absorbing spheres. For porous particles, however, the linear polarization for incident unpolarized light tends to decrease as the size of the particle grows, with the maximum being displaced towards smaller and smaller scattering angles.  相似文献   

7.
Dust particles are uniquely and irregularly shaped, they can be inhomogeneous, form agglomerates, be composed of anisotropic materials, and have a preferred orientation. As such, modeling their light scattering is very challenging. This review takes a look at the advances in dust optical modeling over the last decade. It is obvious that our ability to model the single-scattering properties of dust particles accurately depends on the size parameter. Unfortunately, our ability to account realistically for all the relevant physical properties in light-scattering modeling is the best for small particles; whereas, the realistic treatment of the particles would be most important for large size parameters. When particles are not much larger than the wavelength, even simple model shapes such as homogeneous spheroids appear to perform well; practically any reasonable shape distribution of non-spherical model particles seems superior compared to the Mie theory. Our ability to model scattering by dust particles much larger than the wavelength is very limited: no method presently exists to predict reliably and accurately the single-scattering properties of such particles, although there are models that can be tuned to agree well with the laboratory-measured reference scattering matrices. The intermediate size parameters between the resonance domain and the geometric-optics domain appear to be almost uncharted territory and, consequently, very little can be said about the impact of different physical properties on scattering in this region. Despite the challenges, the use of Mie theory should be avoided: contrary to the popular belief, the use of Mie spheres is a major source of error even in radiation-budget considerations.  相似文献   

8.
Mie scattering is an important tool for diagnosing microparticles or aerosol particles in technical or natural environments. Mie theory is restricted to spherical, homogeneous, isotropic and non-magnetic particles in a non-absorbing medium. However, as microparticles are hardly ever spherical or homogeneous, there is much interest in more advanced scattering theories. During recent decades, scattering methods for non-spherical and non-homogeneous particles have been developed and even some computer codes are readily available. Extension of Mie theory covers coated spheres, stratified spheres and clustered spheres. For homogeneous non-spherical particles such as spheroids, ellipsoids and finite cylinders, surface discretization methods have been developed. Scattering by inhomogeneous particles may be computed by volume discretization methods.  相似文献   

9.
The elastic scattering of spin 1 particles by spin 0 particles is treated in terms of the WolfensteinM-matrix. The purpose of these calculations is to find a method which allows to measure vector and tensor polarization of a spin 1 particle beam scattered by a spin 0 target and to find out experiments which determine all parameters of theM-matrix. The scattering cross section for double and triple scattering has been calculated. The discussion shows, that the use of a polarized ion source is much more favorable than the conventional double and triple scattering technique.  相似文献   

10.
The model of dynamic scattering on a finite ensemble of Brownian particles in liquid is considered. It is shown that an artifact characteristic relaxation time appears in the autocorrelation function of the scattered light intensity, which is much longer than the correlation time controlled by particle diffusion in the scattering volume.  相似文献   

11.
基片与不同方位多形态缺陷粒子的复合光散射特性分析   总被引:2,自引:0,他引:2  
巩蕾  吴振森  高明 《光学学报》2012,32(6):629003-278
结合光学表面无损检测工艺实际情况,给出基片与镶嵌及掩埋的球体/回转椭球体缺陷粒子的散射特性分析。针对基片与缺陷粒子的半空间问题,结合时域有限差分方法使用广义完全匹配吸收层(GPML),结合三波技术引入激励源,给出了相应的连接边界条件,并将互易性定理应用到近远场外推中,使过程简化。数值计算给出了镶嵌及掩埋的球体/回转椭球体缺陷粒子的散射场的角分布。结果显示:镶嵌比掩埋的缺陷粒子受粒子尺寸的影响更明显。在大散射角下,缺陷粒子的位置因素带来的贡献较大。粒子分别掩埋或镶嵌于基片时,在-10°、30°、70°附近的球体粒子和回转椭球体粒子的微分散射截面(DSCS)差别较大。在基片无损检测工程中可以通过对特定角度散射场的测量定标诊断出缺陷的方位和形态。  相似文献   

12.
Abstract

Multiple scattering of incoherent polarized light propagating through a random medium comprised of spheroidal Rayleigh particles is studied using Monte Carlo simulations. Two approaches are taken for the implementation of the simulation: the first uses individual realizations of particle orientation and the second, an accelerated method, averages over the particle orientation. These different methods produce results that are indistinguishable within statistical errors. The depolarization of light is examined in both transmission and backscatter for media comprised of spheroids of different polarizability ratios. In media containing spheroidal particles the depolarization is greater than that for spherical particles. Media containing prolate spheroids are more depolarizing than media comprising oblate particles of the same polarizability ratio. The extra depolarization due to asphericity is much less pronounced in the multiple scattering regime than for single scattering.  相似文献   

13.
The Mie theory and Rayleigh approximation are two basic methods to study the EM scattering of uncharged spherical particle, and when the particle radius is much smaller than the incident wavelength, they are equivalent, but whether the Rayleigh approximation is still equivalent to Mie theory when we use them to calculate the EM scattering of small charged particle, there is still no any report published to discuss this problem. In this paper we make some comparisons between Mie theory and Rayleigh approximation to solve the EM scattering of partially electrification spherical particles. The results showed that the Mie theory would be more suitable to calculate the scattering of charged spherical particles.  相似文献   

14.
Solid particles in Earth’s atmosphere, such as polystyrene beads, are an important factor affecting the processes of absorption and scattering of light in the atmosphere. These processes affect on the solar energy transfer in the Earth’s atmosphere, consequently they have influence on the regional and global climate changes and atmospheric visibility. In particular, great interest to study the scattering properties of small particles compared with wavelength, because of such particles experience low gravitational settlement and may have long time of life in the atmosphere. When scattering particle is much smaller than the wavelength of the scattered or absorbed light, this is the case of Rayleigh scattering. Scattering properties of these particles (such as intensity and the degree of linear polarization) at the Rayleigh scattering are simply derived from electromagnetic Maxwell’s equations. But when the particles are large enough to be comparable with the wavelength, the deviations from Rayleigh scattering law are observed. One of the clear manifestations of such deviations is the recently discovered quasi-Rayleigh polarization leap of monodisperse spherical particles. This quasi-Rayleigh polarization leap allows remote sensing of the sizes of distant particles, based on the spectral position of quasi-Rayleigh polarization leap at different phase angles of observation. In this paper, we studied the effect of the non-sphericity of a scattering polystyrene particle on the magnitude and position of the quasi-Rayleigh polarization leap. It is established that the non-sphericity shifts the position of the quasi-Rayleigh polarization leap shorter wavelengths. It is shown that for non-sphericity of particles makes the quasi-Rayleigh polarization leap becomes less pronounced. Moreover, it was found, that increasing of the phase angle and degree of non-sphericity shift the quasi-Rayleigh polarization leap position to shorter wavelength. However, in the case of not very elongated particles, the quasi-Rayleigh polarization leap is quite well manifested. Therefore, this method is suitable for remote sensing not only the size, but also the degree of non-sphericity of the scattering particles. A simple formula has been obtained for polystyrene beads that relates the degree of non-sphericity of a particle with the wavelength and phase angles at which the quasi-Rayleigh polarization leap is observed.  相似文献   

15.
We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.  相似文献   

16.
随机分布粒子侧向散射光特性的实验研究   总被引:4,自引:2,他引:2  
陈延如  赵琦 《光学学报》2003,23(9):110-1114
两种不同直径(0.22μm和0.494μm)的粒子与过滤的蒸馏水制作不同体积分数的悬浮液作为散射介质。比较了微粒子群侧向散射光中垂直与水平两种偏振光的强度分布。实验结果表明,直径大的粒子其侧向散射光中水平方向线偏振强度远远小于直径小的粒子,而垂直方向线偏振强度却完全相反,远远大于直径小的粒子。  相似文献   

17.
球形粒子之间的声相互作用   总被引:4,自引:0,他引:4       下载免费PDF全文
钱祖文 《物理学报》1981,30(4):433-441
本文讨论某种介质(其中包括许多球形粒子,例如浓悬浮体)对平面波的散射问题,计算了粒子之间的声相互作用场,从而得到了粒子的等效散射截面。当粒子大小比声波波长小很多时,可有如下的结论:(1)由于声相互作用,一个粒子的散射截面只有原来的Q倍,从几何上看,这是由于粒子的互相遮蔽的结果,其遮蔽因子为Q= |1-(γ0A0(1)1A1(1)|2;(2)考虑到相互作用之后,散射系数与浓度不再是线性关系;(3)当粒子的尺度比声波波长小很多但比粘滞波波长大很多时,相互作用之后粒子的散射系数与频率的关系仍服从瑞利散射。但当粒子半径接近或小于粘滞波波长时,散射系数与频率的关系比四次方要高。 关键词:  相似文献   

18.
P.M. Tomchuk   《Surface science》1995,330(3):350-366
This study reports on theoretical investigations of the electric and magnetic absorption of small metallic particles as functions of their shape, with the wavelength of incident e/m radiation assumed to be much greater than the size of the particles. A general expression for the absorption cross-section is derived for the cases when both the bulk and surface electron scattering are dominant. In the IR-region the absorption cross-section is shown to be extremely sensitive to the shape of particles; for particles of a constant volume, yet different in shape, it can change by several orders of magnitude. It is also shown that under dominant surface scattering the optical conductivity of an asymmetric particle is described by a tensor whose principal values are calculated for the ellipsoidal shape. The expression obtained for the electric and magnetic absorption renders ground to infer that the ratio of the contributions due to these absorption mechanisms greatly depends on the shape of particles and polarization of light.  相似文献   

19.
20.
In detecting particles on a substrate, two-white-spots phenomenon was observed. This gives an illusion that light scattering is caused by two spheres, in fact it is just caused by one sphere. This phenomenon makes particle detection by light scattering much more complicated. Analysis on this phenomenon shows that Mie effect is the reason of formation of two white spots. This experiment demonstrates the images of Mie effect, and provides a strong evidence of theory of Mie effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号