首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
ABSTRACT

A mixed variational principle is constrained by a homogeneous yield function using a Lagrange multiplier. The Lagrange factor corresponds to the scalar factor in Prager's normality rule for the plastic strain increments. Several reduced functionals and their associated constitutive equations are derived by eliminating some variables.  相似文献   

2.
3.
Abstract

Manifold theoretic ordinary differential equations of motion for holonomic mechanical systems that depend on problem data, or design variables, are shown to be well posed; i.e., they have a unique solution that depends continuously on problem data. It is proved that these differential equations are equivalent to the d’Alembert variational formulation and the index 3 Lagrange multiplier formulation of differential-algebraic equations of motion, which are also shown to be well posed. These results provide a foundation for dynamic system design sensitivity analysis, which requires differentiability of solutions of the equations of motion with respect to design variables.  相似文献   

4.
ABSTRACT

A finite element based method is developed for geometrically nonlinear dynamic analysis of spatial articulated structures; i.e., structures in which kinematic connections permit large relative displacement between components that undergo small elastic deformation. Vibration and static correction modes are used to account for linear elastic deformation of components. Kinematic constraints between components are used to define boundary conditions for vibration analysis and loads for static correction mode analysis. Constraint equations between flexible bodies are derived in a systematic way and a Lagrange multiplier formulation is used to generate the coupled large displacement-small deformation equations of motion. A lumped mass finite element structural analysis formulation is used to generate deformation modes. An intermediate-processor is used to calculate time-independent terms in the equations of motion and to generate input data for a large-scale dynamic analysis code that includes coupled effects of geometric nonlinearity and elastic deformation. Examples are presented and the effects of deformation mode selection on dynamic prediction are analyzed in Part II of the paper.  相似文献   

5.
A large class of problems in mechanics leads to the minimization of an objective function under equality constraints. In fact, inequality constraints can always be transformed into equality constraints by means of slack variables. The classical approach to solve equality-constrained problems relies on Lagrange multipliers, whose first-order normality conditions (FONC) lead to a system of nonlinear algebraic equations. This system of equations involves as many equations as unknowns, composed of the design variables and Lagrange multipliers, and hence, is amenable to a host of solution methods. In this paper, two methods to eliminate the Lagrange multipliers are reported, by which a reduced system of normality conditions is obtained. Reduction is conducted here either symbolically or numerically using an isotropic orthogonal complement L of the Jacobian matrix of the equality constraints. The relations thus resulting are cast into what is termed the dual form of the FONC. When the problem allows for symbolic calculations, a semi-graphical approach is applied, which leads to the global optimum of the problem at hand. However, the main novelty of the paper lies in an algorithm that returns the stationary points of a constrained optimization problem without requiring the closed-form expressions of the dual form of the FONC. Moreover, numerically efficient and stable procedures are given for the intermediate computational steps. The application of this algorithm is demonstrated with three examples from mechanics.  相似文献   

6.
7.
A formulation for modeling and simulation of friction effects in spatial multibody systems is presented. Constraint reaction forces on rigid bodies that are connected by joints that support friction are derived as functions of Lagrange multipliers, using D’Alembert’s principle. Friction forces acting on bodies are calculated as a function of joint geometry, constraint reaction forces that are functions of Lagrange multipliers, and relative velocities at constraint contact points that are determined by system kinematics. Friction forces are implemented in index 0 differential-algebraic equations of motion that are solved numerically using explicit and implicit numerical integration methods. Spatial examples are presented, yielding accurate results and demonstrating that the systems are not stiff, even in the presence of friction and stiction.  相似文献   

8.
It is known[1]that the minimum principles of potential energy andcomplementary energy are the conditional variation principles underrespective conditions of constraints.By means of the method of La-grange multipliers,we are able to reduce the functionals of condi-tional variation principles to new functionals of non-conditionalvariation principles.This method can be described as follows:Mul-tiply undetermined Lagrange multipliers by various constraints,andadd these products to the original functionals.Considering these un-determined Lagrange multipliers and the original variables in thesenew functionals as independent variables of variation,we can see thatthe stationary conditions of these functionals give these undeter-mined Lagrange multipliers in terms of original variables.The sub-stitutions of these results for Lagrange multipliers into the abovefunctionals lead to the functionals of these non-conditional varia-tion principles.However,in certain cases,some of the undetermined Lagrangemultipliers ma  相似文献   

9.
弹性理论中的临界变分及消除方法   总被引:4,自引:0,他引:4  
何吉欢 《力学季刊》1997,18(4):305-310
临界变分现象是拉氏乘子法的固有特性,钱伟长应用高阶拉氏乘子消除了临界变分现象。本文将提出一种新的方法-凑合反推法,这种方法摒充了拉氏乘子法,把拉氏乘子所在的项目一个待定函数F代替。这样构成的泛函,作者称之为试泛函。而待定函数F的识别类似于拉氏乘子的识别。通过该法可以方便地构造出各种多变量广义变分原理,并且可以消除临界变分现象。  相似文献   

10.
基于对偶变量变分原理,选择积分区间两端位移为独立变量,构造了求解完整约束哈密顿动力系统的高阶保辛算法。首先,利用拉格朗日多项式对作用量中的位移、动量及拉格朗日乘子进行近似;然后,对作用量中不包含约束的积分项采用Gauss积分近似,对作用量中包含约束的积分项采用Lobatto积分近似,从而得到近似作用量;最后,在此近似作用量的基础上,利用对偶变量变分原理,将求解完整约束哈密顿动力系统问题转化为一组非线性方程组的求解。算法具有保辛性和高阶收敛性,能够在位移的插值点处高精度地满足完整约束。算法的收敛阶数及数值性质通过数值算例验证。  相似文献   

11.
摩擦约束塑性力学变分不等原理的半反推法   总被引:2,自引:1,他引:1  
扶名福  孙辉 《力学季刊》2001,22(4):517-521
带摩擦约束的弹塑性接触问题,由于摩擦约束条件是一种判别性的条件,它的变分问题的逆问题的研究比较困难。本文对弹塑性接触力学中的变分不等问题的逆问题进行了研究,改进了半反推法并将其应用到弹塑性变分不等原理的研究中,导出了摩擦约束弹塑性增量广义变分不等原理中的能量泛函,消除了用拉氏乘子法可能产生的临界变分现象,在证明中,巧妙地处理了增量表示的接触摩擦边界条件,避免了使用非线性泛函分析和凸分析,简化了证明。  相似文献   

12.
In this paper, the generalizd variational principles of plate bending, froblems are established from their minimum potential energy principle and minimum complementary energy principle through the elimination of their constraints by means of the method of Lagrange multipliers. The involutory transformations are also introduced in order to reduce the order of differentiations for the variables in the variation. Funhermore, these involutory transformations become infacl the additional constraints in the varialion. and additional Lagrange multipliers may be used in order to remove these additional constraints. Thus, various multi-variable variational principles are obtained for the plate bending problems. However, it is observed that. nol all the constrainls ofva’iaticn can be removed simply by the ordinary method of linear Lagrange multipliers. In such cases, the method of high-order Lagrange multipliers are usedto remove iliose constrainls left over by ordinary linear multiplier method. And consequently. some funct ionals of more general forms are oblained for the generaleed variational principles of plate bending problems.  相似文献   

13.
The paper outlines a procedure to derive the canonical system of equations of the classical theory of thin shells using Reissner’s variational principle and partial variational principles. The Hamiltonian form of the Reissner functional is obtained using Lagrange multipliers to include the kinematical conditions that follow from the Kirchhoff-Love hypotheses. It is shown that the canonical system of equations can be represented in three different forms: one conventional form (five equilibrium equations) and two forms that are equivalent to it. This can be proved by reducing them to the same system of three equations. For problems with separable active and passive variables, partial variational principles are formulated __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 10, pp. 99–107, October 2007.  相似文献   

14.
The conditions for determining solution of buckling eigenvalue problem are discussed. The corresponding system of integral equations with constraint conditions and boundary variational equations with Lagrange multiplier are established. The theorems on the existence and uniqueness of the solution for these problems are given. The corresponding boundary element method is constructed and the error estimation for the approximation solution is obtained. Finally the numerical example is given. Foundation item: the National Natural Science Foundation Pre-research Project (T4107015) Biography: Ding Rui (1969-)  相似文献   

15.
Abstract

This paper presents a variational formulation of constrained dynamics of flexible multibody systems, using a vector-variational calculus approach. Body reference frames are used to define global position and orientation of individual bodies in the system, located and oriented by position of its origin and Euler parameters, respectively. Small strain linear elastic deformation of individual components, relative to their body reference frames, is defined by linear combinations of deformation modes that are induced by constraint reaction forces and normal modes of vibration. A library of kinematic couplings between flexible and/or rigid bodies is defined and analyzed. Variational equations of motion for multibody systems are obtained and reduced to mixed differential-algebraic equations of motion. A space structure that must deform during deployment is analyzed, to illustrate use of the methods developed  相似文献   

16.
Lagrange equation of a class of nonholonomic systems   总被引:1,自引:1,他引:0  
Making use of conclusions from[1]:(1)d-δoperations are commutative;(2)theAppell-Chetaev condition restricting virtual displacements is superfluous,the present paperderives the Lagrange equation without multipliers for a class of first-order nonlinearnonholonomic dynamical systems by means of variational principle.This kind of equationsis new.  相似文献   

17.
Using the method of[1],the present paper derives the Lagrange equation withoutmultipliers for another class of first-order nonholonomic dynamical systems by meansof variational principle.This kind of equations is also new.  相似文献   

18.
In the presented paper, a problem of non-holonomic constrained mechanical systems is treated. New methods in non-holonomic mechanics are applied to a problem of a general coupled rolling motion. Two goals are stressed.The first of them lies in the solution of an originally formulated problem of rolling motion of two rigid cylindrical bodies in the homogeneous gravitational field leading typically to non-linear equations of motion. A solid cylinder can roll inside a ring under the static frictional force assuring rolling without slipping, the ring rolls again without slipping along a generally shaped terrain formed by hills and valleys. “Surprising behaviour” of the mechanical system which permits interesting applications is studied and discussed.The second purpose of the paper is to show that the geometrical theory of non-holonomic constrained systems on fibered manifolds proposed and developed in the last decade by Krupková and others is an effective tool for solving non-holonomic mechanical problems. A comparison of this method to alternative methods is given and the benefits of coordinate-free formulation are mentioned.In this paper, the geometrical theory is applied to the abovementioned mechanical problem. Both types of equations of motion resulting from the theory—deformed equations with the so-called Chetaev-type constraint forces containing Lagrange multipliers, and reduced equations free from multipliers—are found and discussed. Numerical solutions for two particular cases of the motion of the cylindrical system along a cylindrical surface are presented.  相似文献   

19.
Abstract

The nonplanar, nonlinear, resonant forced oscillations of a fixed-free beam are analyzed by a perturbation technique with the objective of determining quantitative and qualitative information about the response. The analysis is based on the differential equations of motion developed in Part I of this paper which retain not only the nonlinear inertia but also nonlinear curvature effects. It is shown that the latter play a significant role in the nonlinear flexural response of the beam.  相似文献   

20.
Dynamics equations of a mobile robot provided with caster wheel   总被引:1,自引:0,他引:1  
Kinematics and dynamics of a mobile robot, consisting of a platform, two conventional wheels and a crank that controls the motion of a free rolling caster wheel, are analyzed in the paper. Based on several matrix relations of connectivity, the characteristic velocities and accelerations of this non-holonomic mechanical system are derived. Using the principle of virtual work, expressions and graphs for the torques and the powers of the two driving wheels are established. It has been verified the results in the framework of the second-order Lagrange equations with their multipliers. The study of the dynamics problems of the wheeled mobile robots is done mainly to solve successfully the control of the motion of such systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号