首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wave propagation in elastic dielectrics with flexoelectricity, micro-inertia and strain gradient elasticity is investigated in this paper. Dispersion phenomenon, which does not exist in classical elastic dielectric theory, is observed in the flexoelectric microstructured solids. Analytical solutions for the phase velocity \(C_{p}\), group velocity \(C_{g}\) and their ratio \(\gamma = C_{g} / C_{p}\) are calculated for the case of harmonic decomposition. The magnitudes of the phase velocity and group velocity changed with the increasing of the wave number, while they are constant in the classical elastic dielectric theory. It is shown that the flexoelectricity, micro-inertia and microstructural effects are significant to predict the real behavior of longitudinal wave propagating in flexoelectric microstructured solids. Microstructural effects are not sufficient for dealing with realistic dispersion curves in flexoelectric solids, the micro-inertia and flexoelectricity are needed to obtain a physically acceptable value of the phase and group velocities.  相似文献   

2.
In this paper the relaxed micromorphic continuum model with weighted free and gradient micro-inertia is used to describe the dynamical behavior of a real two-dimensional phononic crystal for a wide range of wavelengths. In particular, a periodic structure with specific micro-structural topology and mechanical properties, capable of opening a phononic band-gap, is chosen with the criterion of showing a low degree of anisotropy (the band-gap is almost independent of the direction of propagation of the traveling wave). A Bloch wave analysis is performed to obtain the dispersion curves and the corresponding vibrational modes of the periodic structure. A linear-elastic, isotropic, relaxed micromorphic model including both a free micro-inertia (related to free vibrations of the microstructures) and a gradient micro-inertia (related to the motions of the microstructure which are coupled to the macro-deformation of the unit cell) is introduced and particularized to the case of plane wave propagation. The parameters of the relaxed model, which are independent of frequency, are then calibrated on the dispersion curves of the phononic crystal showing an excellent agreement in terms of both dispersion curves and vibrational modes. Almost all the homogenized elastic parameters of the relaxed micromorphic model result to be determined. This opens the way to the design of morphologically complex meta-structures which make use of the chosen phononic material as the basic building block and which preserve its ability of “stopping” elastic wave propagation at the scale of the structure.  相似文献   

3.
In the framework of the theory of mixtures, the governing equations of motion of a fluid-saturated poroelastic medium including microstructural (for both the solid and the fluid) and micro-inertia (for the solid) effects are derived. This is accomplished by appropriately combining the conservation of mass and linear momentum equations with the constitutive equations for both the solid and the fluid constituents. The solid is assumed to be gradient elastic, that is, its stress tensor depends on the strain and the second gradient of strain tensor. The fluid is assumed to have an analogous behavior, that is, its stress tensor depends on the pressure and the second gradient of pressure. A micro-inertia term in the form of the second gradient of the acceleration of the solid is also included in the equations of motion. The equations of motion in three dimensions are seven equations with seven unknowns, the six displacement components for the solid and the fluid and the pore-fluid pressure. Because of the microstructural effects, the order of these equations is two degrees higher than in the classical case. Application of the divergence and the rot operations on these equations enable one to study the propagation of plane harmonic waves in the infinitely extended medium separately in the form of dilatational and rotational dispersive waves. The effects of the microstructure and the micro-inertia on the dispersion curves are determined and discussed.  相似文献   

4.
The gradient theory of elasticity with damping is successfully employed to explain the experimentally observed shift in resonance frequencies during forced harmonic torsional vibration tests of columns made of fine-grained material from their theoretically computed values on the basis of the classical theory of elasticity with damping. To this end, the governing equation of torsional vibrations of a column with circular cross-section is derived both by the lattice theory and the continuum gradient elasticity theory with damping, with consideration of micro-stiffness and micro-inertia effects. Both cases of a column with two rotating masses attached at its top and bottom, and of a column fixed at its base carrying a rotating mass at its free top, are considered. The presence of both micro-stiffness and micro-inertia effects helps to explain the observed natural frequency shift to the left or to the right of the classical values depending on the nature of interparticle forces (repulsive or attractive) due to particle charge. A method for using resonance column tests to determine not only the shear modulus but also the micro-stiffness and micro-inertia coefficients of gradient elasticity for fine-grained materials is proposed.  相似文献   

5.
In recent years there have been many papers that considered the effects of material length scales in the study of mechanics of solids at micro- and/or nano-scales. There are a number of approaches and, among them, one set of papers deals with Eringen's differential nonlocal model and another deals with the strain gradient theories. The modified couple stress theory, which also accounts for a material length scale, is a form of a strain gradient theory. The large body of literature that has come into existence in the last several years has created significant confusion among researchers about the length scales that these various theories contain. The present paper has the objective of establishing the fact that the length scales present in nonlocal elasticity and strain gradient theory describe two entirely different physical characteristics of materials and structures at nanoscale. By using two principle kernel functions, the paper further presents a theory with application examples which relates the classical nonlocal elasticity and strain gradient theory and it results in a higher-order nonlocal strain gradient theory. In this theory, a higher-order nonlocal strain gradient elasticity system which considers higher-order stress gradients and strain gradient nonlocality is proposed. It is based on the nonlocal effects of the strain field and first gradient strain field. This theory intends to generalize the classical nonlocal elasticity theory by introducing a higher-order strain tensor with nonlocality into the stored energy function. The theory is distinctive because the classical nonlocal stress theory does not include nonlocality of higher-order stresses while the common strain gradient theory only considers local higher-order strain gradients without nonlocal effects in a global sense. By establishing the constitutive relation within the thermodynamic framework, the governing equations of equilibrium and all boundary conditions are derived via the variational approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler–Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.  相似文献   

6.
Nonlinear wave propagation in solids and material structures provides a physical basis to derive nonlinear canonical equations which govern disparate phenomena such as vortex filaments, plasma waves, and traveling loops. Nonlinear waves in solids however remain a challenging proposition since nonlinearity is often associated with irreversible processes, such as plastic deformations. Finite deformations, also a source of nonlinearity, may be reversible as for hyperelastic materials. In this work, we consider geometric bucking as a source of reversible nonlinear behavior. Namely, we investigate wave propagation in initially compressed and post-buckled structures with linear-elastic material behavior. Such structures present both intrinsic dispersion, due to buckling wavelengths, and nonlinear behavior. We find that dispersion is strongly dependent on pre-compression and we compute waves with a dispersive front or tail. In the case of post-buckled structures with large initial pre-compression, we find that wave propagation is well described by the KdV equation. We employ finite-element, difference-differential, and analytical models to support our conclusions.  相似文献   

7.
Motivated by the great potential of carbon nanotubes for developing nanofluidic devices, this paper presents a nonlocal elastic, Timoshenko multi-beam model with the second order of strain gradient taken into consideration and derives the corresponding dispersion relation of flexural wave in multi-walled carbon nanotubes conveying fuids. The study shows that the moving flow reduces the phase velocity of flexural wave of the lowest branch in carbon nanotubes. The phase velocity of flexural wave of the lowest branch decreases with an increase of flow velocity. However, the effects of flow velocity on the other branches of the wave dispersion are not obvious. The effect of microstructure characterized by nonlocal elasticity on the dispersion of flexural wave becomes more and more remarkable with an increase in wave number.  相似文献   

8.
The governing equation of motion of gradient elastic flexural Kirchhoff plates, including the effect of in-plane constant forces on bending, is explicitly derived. This is accomplished by appropriately combining the equations of flexural motion in terms of moments, shear and in-plane forces, the moment–stress relations and the stress–strain equations of a simple strain gradient elastic theory with just one constant (the internal length squared), in addition to the two classical elastic moduli. The resulting partial differential equation in terms of the lateral deflection of the plate is of the sixth order instead of the fourth, which is the case for the classical elastic case. Three boundary value problems dealing with static, stability and dynamic analysis of a rectangular simply supported all-around gradient elastic flexural plate are solved analytically. Non-classical boundary conditions, in additional to the classical ones, have to be utilized. An assessment of the effect of the gradient coefficient on the static or dynamic response of the plate, its buckling load and natural frequencies is also made by comparing the gradient type of solutions against the classical ones.  相似文献   

9.
The paper is dedicated to Professor N. F. Morozov on the occasion of his 85th birthday. In the paper, we consider new dispersive properties of elastic flexural waves in periodic structures with rotational inertia. The structure is represented as a lattice with elementary bonds of Rayleightype beams. Although such beams in the semiclassical regime react as the classical Euler–Bernoulli beams, they exhibit new interesting characteristics as the dispersion frequency of flexural waves increases. Special attention is paid to degenerate cases related to the so-called Dirac cones on dispersion surfaces and to the directed anisotropy for the doubly periodic lattice. A comparative analysis accompanied by numerical simulation is carried out for the Floquet–Bloch waves propagating in periodic flexible lattices of different geometry.  相似文献   

10.
By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propagation in micro/nanobeams is studied. The formulations of dispersion relation are explicitly derived for both strain gradient beam models, and presented for different material length scale parameters (MLSPs). For both phenomenological sizedependent beam models, the angular frequency, phase velocity and group velocity increase with increasing wave number. However, the velocity ratios approach different values for different beam models, indicating an interesting behavior of the asymptotic velocity ratio. The present theory is also compared with the nonlocal continuum beam models.  相似文献   

11.
Lamb波理论及层合板冲击损伤的实验研究   总被引:1,自引:1,他引:1  
周晚林  王鑫伟 《实验力学》2004,19(2):211-216
从理论上分析了板中Lamb波信号的传播特性,并给出Lamb波在板中传播的频散方程。理论分析及实验均表明,Lamb波的频散特性与复合材料结构损伤有着直接的联系,而且最低阶的对称和反对称Lamb波模态对层合板的损伤比较敏感,但应用Lamb波的频散效应监测结构的损伤在检测技术上还难以实现。根据板中导波形成Lamb波的共振原理,板中应力波的幅频特性很大程度上反映了Lamb波的谐振特征。因此,利用压电元件的压电阻抗谱分析应力波的各阶模态频率及振幅对结构损伤的变化,能够反映材料内部损伤与Lamb波的频散特性。文中针对表面粘贴压电元件的层合板智能结构,建立了包含Lamb波谐振模式的压电阻抗计算模型。冲击损伤试件的实验表明,由于结构损伤的出现压电阻抗谱中的模态频率及其阻抗幅值等特征信息将发生变化。因此,引入应力波损伤因子可以对结构冲击损伤的存在和程度进行初步评价。该方法基于结构的机-电动态阻抗特性,不受结构的几何形状限制,测试用的压电元件成本低,方法简单可行,有望在智能结构的健康诊断方面获得应用。  相似文献   

12.
A Mindlin continuum model that incorporates both a dependence upon the microstructure and inelastic (nonlinear) behavior is used to study dispersive effects in elasto-plastic microstructured materials. A one-dimensional equation of motion of such material systems is derived based on a combination of the Mindlin microcontinuum model and a hardening model both at the macroscopic and microscopic level. The dispersion relation of propagating waves is established and compared to the classical linear elastic and gradient-dependent solutions. It is shown that the observed wave dispersion is the result of introducing microstructural effects and material inelasticity. The introduction of an internal characteristic length scale regularizes the ill-posedness of the set of partial differential equations governing the wave propagation. The phase speed does not necessarily become imaginary at the onset of plastic softening, as it is the case in classical continuum models and the dispersive character of such models constrains strain softening regions to localize.  相似文献   

13.
For visco-plasticity in polycrystalline solids under high strain rates, we introduce a dynamic flow rule (also called the micro-force balance) that has a second order time derivative term in the form of micro-inertia. It is revealed that this term, whose physical origin is traced to dynamically evolving dislocations, has a profound effect on the macro-continuum plastic response. Based on energy equivalence between the micro-part of the kinetic energy and that associated with the fictive dislocation mass in the continuous dislocation distribution (CDD) theory, an explicit expression for the micro-inertial length scale is derived. The micro-force balance together with the classical momentum balance equations thus describes the viscoplastic response of the isotropic polycrystalline material. Using rational thermodynamics, we arrive at constitutive equations relating the thermodynamic forces (stresses) and fluxes. A consistent derivation of temperature evolution is also provided, thus replacing the empirical route. The micro-force balance, supplemented with the constitutive relations for the stresses, yields a locally hyperbolic flow rule owing to the micro-inertia term. The implication of micro-inertia on the continuum response is explicitly demonstrated by reproducing experimentally observed stress–strain responses under high strain-rate loadings and varying temperatures. An interesting finding is the identification of micro-inertia as the source of oscillations in the stress–strain response under high strain rates.  相似文献   

14.
Gradient elastic flexural Kirchhoff plates under static loading are considered. Their governing equation of equilibrium in terms of their lateral deflection is a sixth order partial differential equation instead of the fourth order one for the classical case. A variational formulation of the problem is established with the aid of the principle of virtual work and used to determine all possible boundary conditions, classical and non-classical ones. Two circular gradient elastic plates, clamped or simply supported at their boundaries, are analyzed analytically and the gradient effect on their static response is assessed in detail. A rectangular gradient elastic plate, simply supported at its boundaries, is also analyzed analytically and its rationally obtained boundary conditions are compared with the heuristically obtained ones in a previous publication of the authors. Finally, a plate with two opposite sides clamped experiencing cylindrical bending is also analyzed and its response compared against that for the cases of micropolar and couple-stress elasticity theories.  相似文献   

15.
This work combines closed-form and computational analyses to elucidate the dynamic properties, termed signatures, of waves propagating through solids defined by the theory of elasticity with microstructure and the potential of such properties to identify microstructure evolution over a material’s lifetime. First, the study presents analytical dispersion relations and frequency-dependent velocities of waves propagating in microelastic solids. A detailed parametric analysis of the results show that elastic solids with microstructure recover traditional gradient elasticity under certain conditions but demonstrate a higher degree of flexibility in adapting to observed wave forms across a wide frequency spectrum. In addition, a set of simulations demonstrates the ability of the model to quantify the presence of damage, just another type of microstructure, through fitting of the model parameters, especially the one associated with the characteristic length scale of the underlying microstructure, to an explicit geometric representation of voids in different damage states.  相似文献   

16.
胡超  韩刚  黄文虎 《力学学报》2004,36(5):549-556
基于考虑磁弹相互作用的Mindlin板弯曲波动方程,采用波函数展开法,分析研究 了含孔软铁磁材料Mindlin板中弹性波散射与动应力集中问题,给出了问题的分析 解和数值算例. 通过分析发现:磁感应强度对动弯矩集中系数和动剪力集中系数有 增加的作用,特别是在低频的情况下.  相似文献   

17.
Plane waves in linear elastic materials with voids   总被引:2,自引:0,他引:2  
The behavior of plane harmonic waves in a linear elastic material with voids is analyzed. There are two dilational waves in this theory, one is predominantly the dilational wave of classical linear elasticity and the other is predominantly a wave carrying a change in the void volume fraction. Both waves are found to attenuate in their direction of propagation, to be dispersive and dissipative. At large frequencies the predominantly elastic wave propagates with the classical elastic dilational wave speed, but at low frequencies it propagates at a speed less than the classical speed. It makes a smooth but relatively distinct transition between these wave speeds in a relatively narrow range of frequency, the same range of frequency in which the specific loss has a relatively sharp peak. Dispersion curves and graphs of specific loss are given for four particular, but hypothetical, materials, corresponding to four cases of the solution.  相似文献   

18.
蜂窝材料的弹性波传播特性   总被引:2,自引:1,他引:1  
甄妮  闫志忠  汪越胜 《力学学报》2008,40(6):769-775
通过研究蜂窝材料的弹性波频散关系,分析了其弹性波传播特性. 采用基于小波理论的分析方法,将材料参数和位移均展开为双正交周期小波基函数的形式,利用Bloch定理将波动方程转化为特征值方程,求解该方程得到3种典型结构------正方、三角与六角排列的铝(Al)和聚丙烯(PP)蜂窝材料的频散关系,并进行了比较分析. 结果显示:结构形式的不同显著地影响其波动特性,而制作材料的不同则没有影响;3种结构形式都不存在完全带隙,但正方和三角形结构在一定的传播方向范围内存在方向带隙,而六角形结构则在任何方向都不存在方向带隙;与正方结构相比,三角结构在相同孔隙率下,在更广的传播方向内和更低的频率下,能产生较宽的方向带隙.   相似文献   

19.
This paper is the sequel of a companion Part I paper devoted to the constitutive equations and to the quasi-static behavior of a second strain gradient material model with second velocity gradient inertia. In the present Part II paper, a multi-cell homogenization procedure (developed in the Part I paper) is applied to a nonhomogeneous body modelled as a simple material cell system, in conjunction with the principle of virtual work (PVW) for inertial actions (i.e. momenta and inertia forces), which at the macro-scale level takes on the typical format as for a second velocity gradient inertia material model. The latter (macro-scale) PVW is used to determine the equilibrium equations relating the (ordinary, double and triple) generalized momenta to the inertia forces. As a consequence of the surface effects, the latter inertia forces include (ordinary) inertia body forces within the bulk material, as well as (ordinary and double) inertia surface tractions on the boundary layer and (ordinary) inertia line tractions on the edge line rod; they all depend on the acceleration in a nonstandard way, but the classical laws are recovered in the case of no higher order inertia. The classical linear and angular momentum theorems are extended to the present context of second velocity gradient inertia, showing that the extended theorems—used in conjunction with the Cauchy traction theorem—lead to the local force and moment (stress symmetry) motion equations, just like for a classical continuum. A gradient elasticity theory is proposed, whereby the dynamic evolution problem for assigned initial and boundary conditions is shown to admit a Hamilton-type variational principle; the uniqueness of the solution is also discussed. A few simple applications to wave propagation and dispersion problems are presented. The paper indicates the correct way to describe the inertia forces in the presence of higher order inertia; it extends and improves previous findings by the author [Polizzotto, C., 2012. A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49, 2121–2137]. Overall conclusions are drawn at the end of the paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号