首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 975 毫秒
1.
The silver nanoparticles (AgNPs) synthesized using hot water olive leaf extracts (OLE) as reducing and stabilizing agent are reported and evaluated for antibacterial activity against drug resistant bacterial isolates. The effect of extract concentration, contact time, pH and temperature on the reaction rate and the shape of the Ag nanoparticles are investigated. The data revealed that the rate of formation of the nanosilver increased significantly in the basic medium with increasing temperature. The nature of AgNPs synthesized was analyzed by UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis (TGA). The silver nanoparticles were with an average size of 20–25 nm and mostly spherical. The antibacterial potential of synthesized AgNPs was compared with that of aqueous OLE by well diffusion method. The AgNPs at 0.03–0.07 mg/ml concentration significantly inhibited bacterial growth against multi drug resistant Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). This study revealed that the aqueous olive leaf extract has no effect at the concentrations used for preparation of the Ag nanoparticles. Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future.  相似文献   

2.
In the present study, we developed an eco-friendly method of stable silver nanoparticles (AgNPs) production using the aqueous extract of Trichodesmium erythraeum. The biosynthesized AgNPs were characterized using UV–Vis spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Energy-Dispersive X-ray (EDX), and X-ray diffraction (XRD). The results affirmed that synthesized AgNPs were crystalline in nature, cubical in shape, and the average size of T. erythraeum silver nanoparticles (TENPs) was 26.5 nm. The antioxidant potential of synthesized AgNPs (500 µg/ml) was 77.01 ± 0.17% in DPPH, 67.5 ± 0.22% in Deoxy-ribose, 52.77 ± 0.42% in ABTS and 88.12 ± 0.26% in nitric oxide radical scavenging assays. The antibacterial results showed excellent inhibition against the clinical strains (Staphylococcus aureus and Proteus mirabilis) and drug-resistant bacterial strains such as E. coli (AmikacinR), S. aureus (TetracyclineR) and S. pneumoniae (PenicillinR). The maximum anti-proliferative effect of TENPs was seen using 50 µg concentration against He La and MCF-7 cell lines, and IC50 values were 25.0 ± 0.50 µg/ml and 30.0 ± 0.50 µg/ml, respectively, at 24 h.  相似文献   

3.
Silver nanoparticles form promising template for designing antimicrobial agents against drug resistant pathogenic microorganisms. Thus, the development of a reliable green approach for the synthesis of nanoparticles is an important aspect of current nanotechnology research. In the present investigation, silver nanoparticles synthesized by a soil Bacillus sp. were characterized using UV–vis spectroscopy, FTIR, SEM, and EDS. The antibacterial potential of biosynthesized silver nanoparticles, standard antibiotics, and their conjugates were evaluated against multidrug-resistant biofilm-forming coagulase-negative S. epidermidis strains, S. aureus, Salmonella Typhi, Salmonella Paratyphi, and V. cholerae. Interestingly, silver nanoparticles (AgNPs) showed remarkable antibacterial activity against all the test strains with the highest activity against S. epidermidis strains 145 and 152. In addition, the highest synergistic effect of AgNPs was observed with chloramphenicol against Salmonella typhi. The results of the study clearly indicate the promising biomedical applications of biosynthesized AgNPs.  相似文献   

4.
The synthesis of well-dispersed and ultrafine metal nanoparticles has great interest due to their distinctive physicochemical properties and biomedical applications. This study is the first report of one-step solvent-free synthesis of AgNPs using Euphorbiaceae plant latex. Among evaluated eight latex-producing plants, four (Jatropha curcas, Jatropha gossypifolia, Pedilanthus tithymaloides, and Euphorbia milii) showed high potential to produce physicochemically distinct, small-sized and bactericidal AgNPs. Phytochemical screening showed presence of rich amount of biochemicals in these plants. J. gossypifolia showed uniformly dispersed comparatively small-sized AgNPs. Dose-dependent growth inhibition of bacterial pathogens Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermis, and Micrococcus luteus was observed for J. gossypifolia latex-synthesized AgNPs with minimum inhibitory concentration values 30, 40, 70, 60, and 60?ppm, respectively, after 24?h. Possible mode of action of AgNPs against pathogens was confirmed by analyzing enzymes and cell leakage.  相似文献   

5.
The development of antibiotic resistance in pathogenic bacterial strains has drawn attention to the quest for new natural antibacterial drugs. Therefore, in the present study, extracts of Rumex hastatus leaves were obtained in methanol and water, and R. hastatus-based silver nanoparticles (AgNPs) were synthesized. Structural and functional properties of synthesized silver nanoparticles were determined by UV–vis spectroscopy, XRD, FTIR and SEM. The synthesized AgNPs and crude extracts were tested to check their antibacterial potential against human pathogenic bacterial strains of Staphylococcus aureus, Staphylococcus haemoliticus, Bacillus cereus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa in well diffusion and broth dilution methods. The present investigation has revealed for the first time that the broth dilution method was found more reproducible than that of the well diffusion method even at lower concentrations of AgNPs and crude extracts. UV– Vis spectroscopic analysis of AgNPs revealed a peak at 367 nm. XRD pattern showed a face-centered cubical to the spherical structure of AgNP crystals. FTIR analysis revealed that flavonoids and terpenoids are responsible for the reduction of AgNO3 to Ag+. SEM analysis determined the spherical structure and 51 nm average diameter of nanoparticles. The antibacterial activity of R. hastatus-based (AgNPs) was found to be significantly higher than aqueous plant extract and silver nitrate alone. Bacterial growth was inhibited by R. hastatus-based AgNPs in a dose-dependent manner. To our knowledge, silver nanoparticles (AgNPs) of R. hastatus were synthesized and characterized for the first time in this study and, based on the findings of current research work R. hastatus extract-based silver nanoparticles are suggested to be used as an antibacterial drug instead of synthetic drugs for the treatment of various human diseases/infections caused by the tested bacterial strains.  相似文献   

6.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   

7.
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but to date, their biological activity on skin commensal and/or opportunistic pathogen bacteria has not been reported. In this study, the effects of poly- and oligosaccharide fractions produced by enzyme-assisted extraction and depolymerization were investigated, for the first time in vitro, on cutaneous bacteria: Staphylococcus aureus, Staphylococcus epidermidis, and Cutibacterium acnes. At 1000 μg/mL, poly- and oligosaccharide fractions did not affect the growth of the bacteria regarding their generation time. Polysaccharide Ulva sp. fractions at 1000 μg/mL did not alter the bacterial biofilm formation, while oligosaccharide fractions modified S. epidermidis and C. acnes biofilm structures. None of the fractions at 1000 μg/mL significantly modified the cytotoxic potential of S. epidermidis and S. aureus towards keratinocytes. However, poly- and oligosaccharide fractions at 1000 μg/mL induced a decrease in the inflammatory potential of both acneic and non-acneic C. acnes strains on keratinocytes of up to 39.8%; the strongest and most significant effect occurred when the bacteria were grown in the presence of polysaccharide fractions. Our research shows that poly- and oligosaccharide Ulva sp. fractions present notable biological activities on cutaneous bacteria, especially towards C. acnes acneic and non-acneic strains, which supports their potential use for dermo-cosmetic applications.  相似文献   

8.
Polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), and stainless steel (SS) are commonly used in medicine and food production technologies. During contact with microorganisms on the surface of these materials, a microbial biofilm is formed. The biofilm structure is difficult to remove and promotes the development of pathogenic bacteria. For this reason, the inhibition of biofilm formation in medical and food production environments is very important. For this purpose, five naturally occurring compounds were used for antimicrobial screening tests. The two with the best antimicrobial properties were chosen to inhibit the biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa. After 3 days of exposure, thymol reduced the amount of biofilm of Pseudomonas aeruginosa within the range of 70–77% and 52–75% for Staphylococcus aureus. Carvacrol inhibited the formation of biofilms by up to 74–88% for Pseudomonas aeruginosa and up to 86–100% for Staphylococcus aureus. Those phenols decreased the enzyme activity of the biofilm by up to 40–100%. After 10 days of exposure to thymol, biofilm formation was reduced by 80–100% for Pseudomonas aeruginosa and by about 79–100% for Staphylococcus aureus. Carvacrol reduced the amount of biofilm by up to 91–100% for Pseudomonas aeruginosa and up to 95–100% for Staphylococcus aureus.  相似文献   

9.
The biosynthesis of metallic nanoparticles is on a sharp rise as they have growing applications in environmental and biomedical sciences. This study reports an eco-friendly and cost-effective methodology for synthesizing biogenic silver nanoparticles (AgNPs) using the extract of Medicago sativa (M. sativa) cultivated in South Khorasan. The parameters used in the synthesis process were optimized to obtain uniformly distributed AgNPs in suitable sizes. The morphological, structural, and bonding characteristics of M. sativa extract-based AgNPs (MSE-AgNPs) were explored using FTIR, FESEM, EDS, TEM, XRD, UV–Vis, and DLS techniques. UV–Vis spectroscopy confirmed the formation of MSE-AgNPs by observing the typical surface plasmon resonance (SPR) peak at 419 nm. XRD, FESEM, TEM, and DLS analyses confirmed the formation of face-centered cubic (fcc) crystalline structure, spherical/elliptical morphology, the average particle size of 15–35 nm, and highly stable MSE-AgNPs. Green synthesized MSE-AgNPs indicated a significant antioxidant activity (78%) compared to M. sativa extract (32%). As such, the synthesized MSE-AgNPs revealed a potential antioxidant activity towards the DPPH radicals. The biologically synthesized MSE-AgNPs exhibited highly potential antibacterial and antifungal activities against Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus aureus, and Candida albicans with the minimum inhibitory concentration (MIC) values of 62.5, 125, 125, 1000, 125, 1000, and 31.25 µg/mL, respectively. In vitro cytotoxicity of the MSE-AgNPs against human fibroblast (HF) cells indicated a dose–response activity (with IC50 value of 18 µg/mL). Moreover, the AgNPs revealed efficient photocatalytic degradation of thymol blue (TB) as an anionic dye and malachite green (MG) as a cationic dye under sunlight and UV irradiations. Up to 94.37% and 90.12% degradation rates were obtained for MG and TB within only 100 min of UV irradiation. These observations signify that synthesized MSE-AgNPs can have great potential for biological and environmental applications.  相似文献   

10.
Cystatin 11 (CST11) belongs to the cystatin type 2 family of cysteine protease inhibitors and exhibits antimicrobial activity in vitro. In this study, we describe the expression and purification of recombinant porcine CST11 in the Pichia pastoris system. We then assess its antimicrobial activity against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis by liquid growth inhibition assay. Kinetic studies indicate that the recombinant porcine CST11 has high potency against E. coli and S. aureus. Scanning electronic microscope analysis showed that CST11 might be targeting the bacterial membrane and, thus, could potentially be developed as a therapeutic agent for inhibiting microbe infection without the risk of antibiotic resistance.  相似文献   

11.
Synthesis and biomedical research of bimetallic gold-silver nanoparticles (Au–Ag NPs) have gained much attention due to their unique properties. Antibacterial mechanism of gold-silver nanoparticles is a current topic of interest in nanomedicine engineering. We used three routes in the synthesis of Au–Ag NPs alloy: i) Co-reduction of [HOOC-4-C6H4NN]AuCl4/AgNO3, ii) Seeding of AuNPs-COOH/AgNO3 and iii) immobilization of AgNPs over the parent AuNPs-COOH. Two mild reducing agents, NaBH4 and 9-BBN (9-borabicyclo(3.3.1)nonane), were used. Colloidal alloy nanoparticles structure was confirmed using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The particles reduced using NaBH4 were larger (~20 nm) than those synthesized using 9-BBN (<10 nm). The synthesized nanoparticles showed high stability under notoriously leaching conditions of chloride-containing electrolytes. Moreover, we studied the Au–Ag NPs antibacterial activity against the growth of Gram-negative Escherichia coli ATCC strain 25922 and Gram-positive Staphylococcus aureus ATCC strain 29213. The antibacterial mechanisms were evaluated by studying the time-dependent generation of reactive oxygen species (ROS). A major destruction of the bacterial cell wall and leakage of cell components were observed by scanning electron microscopy (SEM), which is clearly visible towards E. coli more than S. aureus bacterial strain. The destruction of the bacterial cell wall was further confirmed by detecting the DNA leakage using gel electrophoresis. The synergistic effect of gold enhanced the antibacterial properties, however, with low cytotoxicity to human dermal fibroblast cells. This study deals with the important aspects of time-dependent mechanisms of the antibacterial action of Au–Ag NPs since the leaching out of Ag ion is slow compared to AgNPs. The Au–Ag NPs alloy efficiently tackles microbial activity that can be controlled to minimize cytotoxicity and thus opens their future applications as antibacterial agents.  相似文献   

12.
In the present study, we demonstrate the green synthesis of silver nanoparticles using Sophora pachycarpa extract (S. pachycarpa; SPE) as capping, reducing, and stabilizing agents. The biosynthesized silver nanoparticles (SPE-AgNPs) were tested for catalytic, antibacterial, antifungal, antioxidant, and anti-cancer activities. The affecting parameters (the concentration of silver nitrate, the temperature of the reaction, and time of reaction) on the synthesis process were optimized. The biosynthesized SPE-AgNPs were studied by X-Ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FT-IR). The FESEM and TEM results revealed spherical and oval-like morphology with sizes ranging from 30 to 40 nm. Photocatalytic performance experiments of SPE-AgNPs were determined by the rapid degradation of the eriochrome black T (EBT) and methylene blue (MB) under sunlight and UV irradiations. The results showed that SPE-AgNPs degraded more than 90% and 80% of both dyes under UV and sunlight irradiations, respectively. In addition, the SPE-AgNPs exhibited good antibacterial and antifungal properties against S. aureus, S. epidermidis, P. aeruginosa, E. coli, K. pneumoniae, E. faecalis, and C. albicans with MIC values of 6.25, 6.25, 0.78, 0.39, 0.78, 1.56 and 0.78 µg/ml. The green synthesized SPE-AgNPs were found to inhibit the activity of DPPH free radicals efficiently. Eventually, the SPE-AgNPs exhibited significant in vitro cytotoxicity against K562 tumor cell line (IC50 = 19.5 µg/ml). All these studies indicated that AgNPs synthesized using S. pachycarpa extract have applications in the environmental and biomedical fields.  相似文献   

13.
How to avoid the microenvironment limitations in the therapeutic process of pressure ulcers is still challenging. The development of a functional gel can kill bacteria and scavenge reactive oxygen species (ROS), which is urgently required in the therapeutic process of pressure ulcers. Herein, an in situ sprayed gel is developed with silver nanoparticles (AgNPs) and polydopamine (PDA) NPs (APG) to obviate microenvironment restrictions in treating pressure ulcers. The gel is constructed by spraying sodium alginate solution and CaCl2 solution. AgNPs serve as an antibacterial agent in the formed gel, which can effectively cause bacterial inactivation and show more than 5 log (>99.999%) bacterial killing efficiency against methicillin-resistant S. aureus (MRSA), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli) in vitro. Meanwhile, PDA NPs serve as the antioxidative agent in the formed gel, which can facilitate the elimination of ROS to address the high ROS problem in wound microenvironment. Based on these features, it is demonstrated through cell and animal experiments that the AgNPs and PDA NPs incorporated gel can realize the effective treatment of MRSA-infected and hydrogen peroxide (H2O2)-sensitized pressure ulcers. It is believed that the designed system by a simple spray-coating approach can provide a new therapeutic strategy in biomedical areas.  相似文献   

14.
In this study 540 burns and wound swabs were collected from cancer patients of some Egyptian hospitals. The single infection was detected from 210, and 70 cases among wounded and burned patients, while mixed infection was 30 and 45, respectively. We recovered where 60 isolates of Pseudomonas aeruginosa, 60 isolates of Staphylococcus aureus, 7 isolates of Staphylococcus epidermidis, 4 isolates of Streptococcus pyogenes, 25 isolates of Escherichia coli, 23 isolates of Klebsiella pneumoniae and 27 isolates of Proteus vulgaris from 355 burn and surgical wound infections . All bacterial isolates showed high resistance to the commonly used β-lactams (amoxycillin, cefaclor, ampicillin, vancomycin, amoxicillin/clavulonic), and low resistance to imepenim and ciprofloxacin. Plasmid analysis of six multidrug resistant and two susceptible bacterial isolates revealed the same plasmid pattern. This indicated that R-factor is not responsible for the resistance phenomenon among the isolated opportunistic bacteria. The effect of ultraviolet radiation on the isolated bacteria was studied.  相似文献   

15.
The purpose of this study was to investigate the antibacterial effect of silver nanoparticles in chitosan–poly(ethylene glycol) suspension. The silver nanoparticles (AgNPs) were prepared by use of an environmentally benign method from chitosan (Cts) and poly(ethylene glycol) (PEG) at moderate temperature and with stirring for different times. Silver nitrate (AgNO3) was used as the metal precursor and Cts and PEG were used as solid support and polymeric stabilizer, respectively. The antibacterial activity of silver–chitosan–poly(ethylene glycol) nanocomposites (Ag–Cts–PEG NCs) against Staphylococcus aureus, Micrococcus luteum, Pseudomonas aeruginosa, and Escherichia coli was tested by use of the Mueller–Hinton agar disk-diffusion method. Formation of AgNPs was determined by UV–visible spectroscopy; surface plasmon absorption maxima were observed at 415–430 nm in the UV–visible spectrum. The peaks in the XRD pattern confirmed that the AgNPs had a face-centered cubic structure; peaks of contaminated crystalline phases were not observed. Transmission electron microscopy (TEM) revealed that the AgNPs synthesized were spherical. The optimum stirring time for synthesis of the smallest particle size (mean diameter 5.50 nm) was 12 h. The AgNPs in Cts–PEG were effective against all the bacteria tested. Higher antibacterial activity was observed for AgNPs with smaller size. These results suggest that AgNPs can be used as an effective inhibitor of bacteria and can be used in medical applications. These results also suggest that AgNPs were successfully synthesized in Cts–PEG suspension at moderate temperature with different stirring times.  相似文献   

16.
Anti-virulence strategy is currently considered a promising approach to overcome the global threat of the antibiotic resistance. Among different bacterial virulence factors, the biofilm formation is recognized as one of the most relevant. Considering the high and growing percentage of multi-drug resistant infections that are biofilm-mediated, new therapeutic agents capable of counteracting the formation of biofilms are urgently required. In this scenario, a new series of 18 thiazole derivatives was efficiently synthesized and evaluated for its ability to inhibit biofilm formation against the Gram-positive bacterial reference strains Staphylococcus aureus ATCC 25923 and S. aureus ATCC 6538 and the Gram-negative strain Pseudomonas aeruginosa ATCC 15442. Most of the new compounds showed a marked selectivity against the Gram-positive strains. Remarkably, five compounds exhibited BIC50 values against S. aureus ATCC 25923 ranging from 1.0 to 9.1 µM. The new compounds, affecting the biofilm formation without any interference on microbial growth, can be considered promising lead compounds for the development of a new class of anti-virulence agents.  相似文献   

17.
A series of N‐(5‐chloro‐2‐hydroxyphenyl)‐(3/4/5‐substituted)‐salicylaldimines ( I – XI ) were synthesized using appropriate synthetic route. Their structures were characterized by FT‐IR, UV‐Visible, ESI‐MS, 1H and 13C NMR spectroscopic techniques and analytical methods. The crystal structure of N‐(5‐chloro‐2‐hydroxyphenyl)‐5‐bromosalicylaldimine ( V ) was determined by X‐ray diffraction at room temperature. Relationship between the melting points and the structures of the compounds was examined. Antimicrobial activity of the compounds was evaluated against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis. Antifungal activities were reported for Candida albicans. Schiff bases showed considerable antimicrobial activity against S. aureus, S. epidermidis and C. albicans. N‐(5‐Chloro‐2‐hydroxyphenyl)‐3‐hydroxy‐salicylaldimine ( II ) has the broadest and highest antimicrobial activity according to the others.  相似文献   

18.
Currently, the potential utilization of fruits and vegetable waste as a source of micronutrients and antioxidants has increased. The present study, therefore, aimed to determine the antimicrobial and anti-inflammatory activities of Citrus nobilis peel extract. A modified solvent evaporation technique was employed for peel extract preparation. For effective utilization of the natural product, quantitative analysis of phenolic compounds was carried out using liquid chromatography and mass spectroscopy technique. Phenolic and flavonoids were present in high amounts, while β-carotene and lycopene were present in vestigial amounts. The antimicrobial efficiency of peel extract was evaluated against four bacterial strains including Staphylococcus aureus (MTCC 3160), Klebsiella pneumoniae (MTCC 3384), Pseudomonas aeruginosa (MTCC 2295), and Salmonella typhimurium (MTCC 1254), and one fungal strain Candida albicans (MTCC 183), and zone of inhibition was comparable to the positive control streptomycin and amphotericin B, respectively. The extract of Citrus nobilis peels showed effective anti-inflammatory activity during human red blood cell membrane stabilization (HRBC) and albumin denaturation assay. The extracts also exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity ranging from 53.46 to 81.13%. Therefore, the obtained results suggest that Citrus nobilis peel could be used as an excellent source of polyphenols and transformed into value-added products.  相似文献   

19.
Due to environmentally friendly and cost- effective issues, biological methods for silver nanoparticles (AgNPs) synthesis are advantageous over chemical and physical ones. In this study, AgNPs synthesized using Lavandula stoechas extract as a reductant and its antioxidant capacity, antibacterial property and cytotoxicity effect were investigated. The phyto-synthesized AgNPs were characterized using various analyses such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD) as well as Fourier transform infrared (FT-IR). The prepared nanoparticles were spherical on shape with the size about 20–50 nm. Antibacterial studies through agar disk diffusion method confirmed the antibacterial potential of phyto-synthesized AgNPs toward two clinical Staphylococus aureus and Pseudomonas aeruginosa bacteria, although MTT assay demonstrated that S. aureus (MIC = 125 μg/ml) was more susceptible to AgNPs than P. aeruginosa (MIC = 250 μg/ml). Moreover, the cytotoxicity assay of phyto-synthezied AgNPs showed a low cytotoxic effect on RAW264 cell line at 62.5 μg/ml as an effective concentration. Also the considerable antioxidant capacity of the AgNPs confirmed through DPPH assay. Great antibacterial and antioxidant properties along with biocompatibility make the suggested phyto-synthesized AgNPs a great candidate for different biomedical applications including wound healing.  相似文献   

20.
Bacteria-associated infections have increased in recent years due to treatment resistance developed by these microorganisms. Due to the high antibacterial capacity associated with their nanometric size, nanoparticles, such as zinc oxide (ZnO), have proven to be an alternative for general medical procedures. One of the methodologies to synthesize them is green synthesis, where the most commonly used resources are plant species. Using Dysphania ambrosioides extract at various synthesis temperatures (200, 400, 600, and 800 °C), zinc oxide nanoparticles (ZnO-NPs) with average sizes ranging from 7 to 130 nm, quasi-spherical shapes, and hexagonal prism shapes were synthesized. Larger sizes were obtained by increasing the synthesis temperature. The ZnO crystalline phase was confirmed by X-ray diffraction and transmission electron microscopy. The sizes and shapes were observed by field emission scanning electron microscopy. The Zn-O bond vibration was identified by Fourier transform infrared spectroscopy. Thermogravimetry showed the stability of ZnO-NPs. The antibacterial evaluations, disk diffusion test, and minimum bactericidal concentration, demonstrated the influence of particle size. The smaller the nanoparticle size, the higher the inhibition for all pathogenic strains: Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, and dental pathogens: Streptococcus mutans, Streptococcus sanguinis, Porphyromonas gingivalis, and Prevotella intermedia. The molecular docking study showed a favorable interaction between ZnO-NPs and some proteins in Gram-positive and Gram-negative bacteria, such as TagF in Staphylococcus epidermidis and AcrAB-TolC in Escherichia coli, which led to proposing them as possible targets of nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号