首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Metallocene ethylene-1-octene copolymers having different densities and comonomer content ranging from 11 to 36 wt% (m-LLDPE), and a Ziegler copolymer (z-LLDPE) containing the same level of short-chain branching (SCB) corresponding to one of the m-LLDPE polymers, were subjected to extrusion. The effects of temperature (210-285 °C) and multi-pass extrusions (up to five passes) on the rheological and structural characteristics of these polymers were investigated using melt index and capillary rheometry, along with spectroscopic characterisation of the evolution of various products by FTIR, 13C-NMR and colour measurements. The aim is to develop a better understanding of the effects of processing variables on the structure and thermal degradation of these polymers. Results from rheology show that both extrusion temperature and the amount of comonomer have a significant influence on the polymer melt thermo-oxidative behaviour. At low to intermediate processing temperatures, all m-LLDPE polymers exhibited similar behaviour with crosslinking reactions dominating their thermal oxidation. By contrast, at higher processing temperatures, the behaviour of the metallocene polymers changed depending on the level of comonomer content: higher SCB gave rise to predominantly chain scission reactions whereas polymers with lower level of SCB continued to be dominated by crosslinking. This temperature dependence was attributed to changes in the different evolution of carbonyl and unsaturated compounds including vinyl, vinylidene and trans-vinylene.  相似文献   

2.
The influence of the comonomer content in a series of metallocene-based ethylene-1-octene copolymers (m-LLDPE) on thermo-mechanical, rheological, and thermo-oxidative behaviours during melt processing were examined using a range of characterisation techniques. The amount of branching was calculated from 13C NMR and studies using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were employed to determine the effect of short chain branching (SCB, comonomer content) on thermal and mechanical characteristics of the polymer. The effect of melt processing at different temperatures on the thermo-oxidative behaviour of the polymers was investigated by examining the changes in rheological properties, using both melt flow and capillary rheometry, and the evolution of oxidation products during processing using infrared spectroscopy.The results show that the comonomer content and catalyst type greatly affect thermal, mechanical and oxidative behaviour of the polymers. For the metallocene polymer series, it was shown from both DSC and DMA that (i) crystallinity and melting temperatures decreased linearly with comonomer content, (ii) the intensity of the β-transition increased, and (iii) the position of the tan δmax peak corresponding to the α-transition shifted to lower temperatures, with higher comonomer content. In contrast, a corresponding Ziegler polymer containing the same level of SCB as in one of the m-LLDPE polymers, showed different characteristics due to its more heterogeneous nature: higher elongational viscosity, and a double melting peak with broader intensity that occurred at higher temperature (from DSC endotherm) indicating a much broader short chain branch distribution.The thermo-oxidative behaviour of the polymers after melt processing was similarly influenced by the comonomer content. Rheological characteristics and changes in concentrations of carbonyl and the different unsaturated groups, particularly vinyl, vinylidene and trans-vinylene, during processing of m-LLDPE polymers, showed that polymers with lower levels of SCB gave rise to predominantly crosslinking reactions at all processing temperatures. By contrast, chain scission reactions at higher processing temperatures became more favoured in the higher comonomer-containing polymers. Compared to its metallocene analogue, the Ziegler polymer showed a much higher degree of crosslinking at all temperatures because of the high levels of vinyl unsaturation initially present.  相似文献   

3.
采用动态流变学测试和结晶动力学的方法研究了两种分子量的高密度聚乙烯(HDPE)与茂金属线型低密度聚乙烯(m-LLDPE)共混体系的相容性.流变学研究表明,HDPE/m-LLDPE共混物在低ω区域lgG′-lgω关系曲线偏离线性规律,在熔融态为非均相体系.DSC分析发现HDPE/m-LLDPE共混物体系中HDPE的熔点随着m-LLDPE含量的增多而逐渐下降,说明HDPE与m-LLDPE二者具有机械相容性.当HDPE在m-LLDPE的熔体中等温结晶,分子量较高的HDPE结晶速率与纯HDPE相近,m-LLDPE的含量变化对Avrami指数n的影响不大;分子量较低的HDPE指数n和半结晶时间t1/2随m-LLDPE含量的增加逐渐增大,结晶速率随着m-LLDPE含量的增加逐渐下降,表明熔融态的m-LLDPE和HDPE存在着较强的分子间相互作用,二者具有一定的相容性.  相似文献   

4.
Photo-oxidative degradation of polystyrene in the form of film 20 μm thick was carried out in air using u.v. light of 254 nm at room temperature and at temperatures up to Tg. GPC was used to study changes of molecular weight distribution during the process. The GPC results were analysed using equations for an initially most probable distribution and non-uniform energy dissipation; the quantum yield values of chain scission and cross-linking of polystyrene during degradation were calculated. Initially, degradation progressed at high rate, connected with consumption of oxygen dissolved in the film. The slower subsequent degradation was connected with consumption of oxygen supplied during the reaction. An appreciable increase in the quantum yields for chain scission and cross-linking was observed just below and at Tg for the initial stage of photo-oxidative degradation. This increase of the quantum yield of photodegradation was caused by increased mobility of oxygen molecules in the film, connected with movement of polymer chain elements.  相似文献   

5.
Fullerene (C60)/high density polyethylene (HDPE) composites were studied in order to understand for their behaviors on thermal and thermo-oxidative degradation. Under different atmosphere, the influences of C60 on the thermal stability of HDPE are different. Thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TG-FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) demonstrate that in N2 the addition of C60 increases the onset decomposition temperature by about 10 °C with more heavy compounds (more than 34 carbon). Also the thermal stability of HDPE in air is remarkably improved with the addition of C60. When the content of C60 is 2.5 wt% the onset decomposition temperature increases by about 91 °C. The results of viscoelastic behavior and gel content reveal that C60 can trap the alkyl radicals and alkyl peroxide radicals to inhibit hydrogen abstraction to suppress the chain scission and preserve the long chain structure. However, in the absence of C60 or with low C60 concentration, hydrogen abstraction occurs, resulting in the formation of a series of alkyl radicals and alkyl peroxide radicals, which accelerates the chain scission and plays a leading role in the thermal oxidative degradation.  相似文献   

6.
This paper is devoted to the study of crystallization and melting of two metallocene polyethylenes (m-PEs). A metallocene linear low density polyethylene (m-LLDPE) and a metallocene very low density polyethylene (m-VLDPE) were used consisting of 3.3 mol% butyl and 6 mol% ethyl branches, respectively. Several melt endotherms after stepwise crystallization revealed that the two m-PEs consisted of molecular fractions with different molecular weight and branch distribution. More segregation was observed for the m-VLDPE comparing with m-LLDPE. Using the relationships proposed by Hosoda, the short chain branching distribution (SCBD) and the average methylene groups in the lamella thickness were also calculated for the two polymers. These values were compared with the values obtained from theory of rubber elasticity. There was a very good correlation between the data.  相似文献   

7.
The influence of the repeated extrusion on the molecular parameters of low density polyethylene (LDPE) Bralen NA 7-25 was studied. Virgin polyethylene was submitted up to 20 extrusion cycles and the processed samples were fractioned using precipitation fractionation. Non-fractionated samples and the individual polymer fractions were characterized by their weight average molar masses Mw (static light scattering), number average molar masses Mn (osmometry) and limiting viscosity numbers [η] (viscometry). Rheological properties in terms of shear viscosity curve, zero shear viscosity and flow activation energy were also determined by using high pressure capillary rheometer. The course of the changes in molecular parameters of LDPE is influenced both by the initial polymer structure and by the changes induced by the mechano-chemical degradation. The suggested degradation mechanisms during multiple extrusion of Bralen are chain scission predominating in the early stage of processing followed by recombination of macromolecules resulting in crosslinking and formation of microgel, which is clearly notable for the samples extruded 3-20 times.  相似文献   

8.
In the present study, the influence of electron-beam irradiation on plasticity-controlled and crack-growth-controlled failure in high-density polyethylene (HDPE) is investigated and the effect of both molecular weight distribution (MWD) and short chain branching (SCB) content are taken into account. Size exclusion chromatography (SEC) is used to study the evolution of the MWD of the sol fraction as a function of irradiation dose. Here, it is seen that chains shorter than the percolation threshold (5 kDa) are largely unaffected by electron beam radiation, while the fraction of longest chains (M > 300 kDa) is nearly entirely incorporated into the cross-linked network. Both yield stress and Young's modulus increased with irradiation dose, where the magnitude of the increase appears to be connected to the gel fraction. The (fatigue) crack growth kinetics of the grades changed relatively little with irradiation dose, which is unexpected. Furthermore, convergence of the crack growth kinetics parameter to a narrow range of values could be observed for the investigated grades at relatively high gel fractions. This would imply that the crack growth kinetics become increasingly independent of the MWD upon irradiation cross-linking, which could be attributed to a shift in the underlying crack growth mechanism from chain slip to chain scission.  相似文献   

9.
Summary: The influences of short chain branching (SCB) and molecular (Mw) weight of low density polyethylene (LDPE) on the solid state properties of polypropylene (PP)-LDPE blends were investigated by mechanical and thermal techniques. DSC analysis of all blends exhibit a double melting peak at all compositions studied thus suggesting that both PP and LDPE crystals exist separately in the solid state. It was found that the SCB and Mw of LDPE influenced the modulus and ultimate tensile strength of the blends. However, elongation at break seems to be independent of the molecular characteristics of the pure homopolymer especially at PP blend composition greater than 50%. LDPE with high SCB showed broader melting peaks. Addition of a small amount of a low Mw LDPE (10%) resulted in a higher elongation at break than a high Mw LDPE. There is likely a correlation between the presence of a new peak in the thermograms of PP-rich blends and the observed poor elongation at break.  相似文献   

10.
The degrading behaviors of three kinds of melt polyolefin elastomers (POEs) at presence of dicumyl peroxides (DCPs) in transient shear flow were evaluated at elevated temperature by parallel plate rheometer. The critical shear rates for degradations of all POEs were different from one to another. The rheological and gel permeation chromatograph (GPC) results showed that the degradation was more and more distinct and the duration to achieve one similar level of molecular weight decreased as the shear rate increased. For quantitative information on chain structure, linear viscoelasticity combined with branch-on-branch (BOB) dynamic model was used to predict probable compositions and chain topologies of the modified products, which were reasonably explained by the suggested mechanism of radical reactions and could confirm that there was a kind of selectivity of shear rate on POE chains for degradation. Higher shear rate can enlarge the differences in mobility of the two scission parts and can further increase the possibility of effective degradation on the original chains.  相似文献   

11.
The influence of the octene content on the photodegradation behaviour of ethylene–octene copolymers (EOCs) was revealed by investigating the photooxidation of low density polyethylene (LDPE) and EOCs with different octene contents through a series of characterisation methods. LDPE was very sensitive to ultraviolet light and the photostabilities of EOCs decreased with increasing octene concentration. The photodegradation of all samples produced hydroxyl, carbonyl and vinyl groups. The ease of chain crosslinking and scission was increased as the octene content rose. Crosslinking predominated in late irradiation period of LDPE while chain scission was dominant in that of EOCs. Annealing and chain scission promoted the secondary crystallisation of the crystallisable chain segments. Chain scission enhanced the crystallisation ability of the irradiated EOCs while it decreased that of the weathered LDPE. The photostabilities of crystals could be ranked as follows: the chain-folded lamellar crystals > the bundled crystals > the fringed micellar crystals. The thermal stabilities and mechanical properties of samples decreased with increasing irradiation time and the decreasing extent was correlated with the comonomer content.  相似文献   

12.
Polyaniline (PAni) was prepared by electrochemical polymerization and subjected to different doses of electron beam (EB) irradiation. The effect of EB irradiation causes both chain scission and cross-linking process in PAni, which depends on irradiation dose. The degree of chain scission and cross-linking in PAni by EB irradiation is characterized through XRD, TGA, DSC, solubility, EPR and electrical properties measurement. The results reveal that with increase in EB irradiation dose from 0 to 150 kGy DC and AC conductivity and dielectric constant are found to increase mainly due to the chain scission or further doping in PAni. Due to irradiation there is change in the structure of PAni, such as decrease in the d-spacing, inter-chain separation, thermal stability and Tg but increase in the percent crystallinity and solubility. With further increase in the EB irradiation dose from 150 kGy onwards the DC and AC conductivity and dielectric constant are decreased due to the cross-link formation or dedoping in PAni, which causes the decrease in percentage of crystallinity and solubility and increase in d-spacing, inter-chain separation, thermal stability and Tg of PAni.  相似文献   

13.
The photodegradation behaviour of ethylene-vinyl acetate copolymer (EVA)/low density polyethylene (LDPE) composite containing four different types of titanium dioxide (TiO2) was investigated through colour difference, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and mechanical tests. The results showed that the performance losses of composites were qualitatively correlated with the degradation degree. The vinyl acetate (VA) groups in EVA were sensitive to UV light and the photodegradation mainly occurred in the amorphous region. The chain scission and annealing effect facilitated the secondary crystallization of composites. The heterogeneous nucleation effect of TiO2 on the crystallization of composites was related to the particle size of TiO2. The micro rutile TiO2, micro anatase TiO2 and their mixture (rutile/anatase = 13/87) exhibited a photo-stabilising effect, while the nano mixed crystals TiO2 (rutile/anatase = 20/80) had an opposite effect.  相似文献   

14.
选用4种商品化的具有不同熔体流动速率的低密度聚乙烯(LDPE),利用高温凝胶渗透色谱仪(HT-GPC)、碳核磁共振谱仪(13C NMR)、差示扫描量热仪(DSC)和流变仪研究其链结构特点及其流变性能。 按照相对分子质量的差异分成两组,D-1和Q-1,D-3和Y-1,每组的两个样品具有相近的平均相对分子质量。 13C NMR的结果表明,4种LDPE都既含有短链支化又含有长链支化,且短链支化含量均高于长链支化含量;而短链支化中丁基含量最多。 连续自成核退火热分级(SSA)结果表明,树脂中均含有不同长度的可结晶的亚甲基序列,即每种树脂分子链内的短链支化分布不均匀。 探讨了相对分子质量及其分布、亚甲基序列长度及其分布、支化含量、结晶度等因素对树脂熔融行为、流变行为和薄膜力学性能的影响,发现Q-1的低相对分子质量尾端和Y-1的长链支化含量均影响熔体流动速率,平均亚甲基序列长度决定熔融峰的位置,结晶度直接影响薄膜的力学性能。 基于上述结果,建立结构与性能的关联。  相似文献   

15.
Epoxy resin composites reinforced with E-glass (E), 3D glass (3D) and carbon fibre (CF) were subjected to an intense UV and high temperature accelerated degradation environment. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to provide a molecular characterisation of the surface of the degraded composites. The response at the surface of the epoxy resin composites to oxidative degradation is influenced by the composite reinforcement type and characteristics. XPS results indicate that 3D resin composites exhibit more surface oxidation as a result of the accelerated degradation in comparison with E and CF composites. Principal components analysis (PCA) of the ToF-SIMS positive ion spectra showed that E and 3D resin composites suffered chain scission while CF composites suffered chain scission and cross-linking reactions as a result of the intense UV exposure. The extent of the surface oxidation, cross-linking/condensation reaction and loss of low molecular weight (lower than C4Hx) aliphatic hydrocarbons may be indicated using PCA of both the ToF-SIMS positive and negative ion spectra. PCA also provides insight for proposing epoxy resin chain scission and oxidation reaction mechanisms.  相似文献   

16.
Low density polyethylene (LDPE) was modified to introduce biodegradability by grafting highly hydrophilic monomers (which can act as nutrients for microorganisms) such as glucose by a novel melt phase reaction using Brabender plasti-corder in the presence of ceric ammonium nitrate (CAN) to obtain 4-O-hydroxymethyl d-arabinose (sugar) end-capped LDPE (Su-g-LDPE) at a maximum grafting of 16%. The grafted polymers were characterized by FTIR, thermal analysis, WAXD and mechanical property measurements. The biodegradability of Su-g-LDPE was carried out by soil-burial test and by optical density measurements in presence of an aerobic bacterium Pseudomonas sp. The degraded polymer shows changes in weight, crystallinity and inherent viscosity. Optical density of the medium registered an increase with degradation. FTIR spectra of the degraded samples showed 70% decrease in the ketone carbonyl index (ν1719/ν1465) of Su-g-LDPE indicating microbial degradation of LDPE matrix, which was further confirmed by SEM micrographs. The present data support a microbial oxidation process involving β-oxidation whereby the carbonyl is further oxidized to carboxylic acid and affects cleavage of the LDPE chain at the ends.  相似文献   

17.
The melt stabilising efficiency of antioxidants with different structures based on hindered phenols, phosphite esters, phosphonite and a lactone was examined during multi-pass extrusions at 265 °C in three metallocene ethylene-1-octene copolymers (m-LLDPE) having different extent of short chain branching (SCB) and one Zeigler copolymer (z-LLDPE) containing the same level of SCB corresponding to one of the m-LLDPE polymers. The effect of the different antioxidants, when used separately and in combination, was investigated by characterising the changes in the polymer's rheological behaviour, colour formation and structural changes based on unsaturated groups and carbonyl content during five multi-pass extrusions. The results showed that all stabilisation systems examined offered higher efficiency in the metallocene polymers compared to the Zeigler. The effect of the extent of SCB in the metallocene polymers on the stabilising efficacy of the antioxidant systems was also examined, and it was shown that it had a significant effect, with both single and combinations of antioxidants giving higher efficiency in the m-LLDPE polymer containing higher extent of SCB. The presence of the lactone HP136 in mixtures containing hindered phenol-phosphite antioxidant systems gave a higher melt stabilisation efficiency than in its absence and this has been attributed to a co-operative antioxidant reaction steps that take place between the antioxidants resulting in the possible regeneration of the lactone antioxidant through a redox reaction. In all the metallocene PE polymers examined, the biologically hindered phenol, Irganox E, was shown to be more effective than the conventionally hindered phenol Irganox 1076, when examined alone or in combination with phosphite esters.  相似文献   

18.
The hydrolytic and enzymatic degradation behavior of poly(epsilon-caprolactone) (PCL) is investigated using the Langmuir monolayer technique, and an improved data acquisition and data reduction procedure is presented. Hydrolytic and enzymatic monolayer degradation experiments of PCL with various molecular weights by Pseudomonas cepacia lipase have been carried out to analyze the influence of subphase pH, subphase temperature, enzyme concentration, and the packing density of polymer chains on the degradation kinetics. The enzymatic monolayer degradation results in an exponential increase in the number of dissolved degradation fragments with increasing degradation time, which confirms random chain scission to be the dominant scission mechanism. The increase in the enzymatic scission rate constant with decreasing initial average molecular weight of the polymers is assigned to the influence of the area density of polar terminal groups on the substrate-enzyme complex formation.  相似文献   

19.
Langevin molecular dynamics (LMD) simulations have been performed to understand the role of the short chain branches (SCB) on the formation of ordered domains by cooling dilute solutions of ethylene/α‐olefins copolymer models. Three different long single‐chain models (C2000) with 0, 5, and 10 branches each 1000 carbons were selected. These models were equilibrated at high reduced temperature (T* = 13.3) and cooling in steps of 0.45 until the final temperature (T* = 6.2) by running a total of 35 × 106 LMD steps. During the cooling process, global order parameter, torsion distribution, position of the branches, and local‐bond order parameter were calculated and monitored. The peaks of crystallization for each model were calculated by differentiating the global order parameter with temperature. The Tc (crystallization temperature) decreases as the number of branches increases as has been experimentally reported. The formation of order in the copolymers is affected by the amount of the SCB in the backbone of the polymer chain. Initially, the SCB move to the folding surface. Once the SCB are located near the folding surface the order starts to grow. In all cases here shown, the C4 branches are excluded from the ordered domains. To take into account, the influence of the branch distribution, a different branch distribution model has been considered for the two‐branched systems. The crystallization fraction (α) and the density of the amorphous and ordered fractions was defined using the local‐bond order parameter. Both magnitudes decrease as the number of branches increases. These facts fairly agree with experimental literature data. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

20.
Abstract

The oxidative photolysis of polyvinylpyrrolidone with light of λ = 2537 Å has been studied over a range of oxygen pressures and polymer concentrations. The results show that chain scission and cross linking take place simultaneously. In the range where cross linking is a negligible component, a mechanism based on chain scission due to components which lead to chain scission without intervention of oxygen, and a component which leads to chain scission via hydroperoxide side groups, has been proposed. This mechanism accounts satisfactorily for all observed features of the reaction. The degree of degradation at any one time decreases with oxygen pressure. Cupric ions, with or without oxygen present, have very little influence on the degradation process. However, the UV spectra of PVP in the presence of cupric ions are different from those without them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号