首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An explicit density-based solver of the compressible Euler equations suitable for cavitation simulations is presented, using the full Helmholtz energy Equation of State (EoS) for n-Dodecane. Tabulated data are derived from this EoS in order to calculate the thermodynamic properties of the liquid, vapour and mixture composition during cavitation. For determining thermodynamic properties from the conservative variable set, bilinear interpolation is employed; this results to significantly reduced computational cost despite the complex thermodynamics model incorporated. The latter is able to predict the temperature variation of both the liquid and the vapour phases. The methodology uses a Mach number consistent numerical flux, suitable for subsonic up to supersonic flow conditions. Finite volume discretization is employed in conjunction with a second order Runge–Kutta time integration scheme. The numerical method is validated against the Riemann problem, comparing it with the exact solution which has been derived in the present work for an arbitrary EoS. Further validation is performed against the well-known Rayleigh collapse of a pure vapour bubble. It is then used for the simulation of a 2-D axisymmetric n-Dodecane vapour bubble collapsing in the proximity of a flat wall placed at different locations from the centre of the bubble. The predictive capability of the incorporated Helmholtz EoS is assessed against the widely used barotropic EoS and the non-isothermal Homogeneous Equilibrium Mixture (HEM).  相似文献   

2.
The paper presents temperature distribution of superheated liquid during the growth of spherical vapour bubble between two-phase temperatures. The heat equation is resolved by the modification of similarity parameter method of Screven [Chem Engng Sci 10:1-13(1959)] between two finite boundaries. Under these conditions, the growth of vapour bubble and temperature are obtained analytically in an implicit form which are different than that obtained before. The growth rate is obtained as a generalized formula compared with Plesset amd Zwick and Scriven et al. theories [J Appl Phys 25:493-500(1954);Chem Engng Sci 10:1-13(1959)]. The growth and temperature field affected by the initial superheating and thermal diffusivity.  相似文献   

3.
The employment of different mathematical models to address specifically for the bubble nucleation rates of water vapour and dissolved air molecules is essential as the physics for them to form bubble nuclei is different. The available methods to calculate bubble nucleation rate in binary mixture such as density functional theory are complicated to be coupled along with computational fluid dynamics (CFD) approach. In addition, effect of dissolved gas concentration was neglected in most study for the prediction of bubble nucleation rates. The most probable bubble nucleation rate for the water vapour and dissolved air mixture in a 2D quasi-stable flow across a cavitating nozzle in current work was estimated via the statistical mean of all possible bubble nucleation rates of the mixture (different mole fractions of water vapour and dissolved air) and the corresponding number of molecules in critical cluster. Theoretically, the bubble nucleation rate is greatly dependent on components’ mole fraction in a critical cluster. Hence, the dissolved gas concentration effect was included in current work. Besides, the possible bubble nucleation rates were predicted based on the calculated number of molecules required to form a critical cluster. The estimation of components’ mole fraction in critical cluster for water vapour and dissolved air mixture was obtained by coupling the enhanced classical nucleation theory and CFD approach. In addition, the distribution of bubble nuclei of water vapour and dissolved air mixture could be predicted via the utilisation of population balance model.  相似文献   

4.
5.
The paper describes results from an experimental and theoretical study of the effect of an electric field on nucleate boiling and the critical heat flux (CHF) in pool boiling of R123 at atmospheric pressure on a horizontal wall with a smooth surface. Two designs of electrode (parallel rods and wire mesh) were used. The experimental data exhibit some differences from the data obtained by other researchers in similar experiments on a wall with a different surface finish and with a slightly different design of wire mesh electrode. The hydrodynamic model for EHD enhancement of CHF cannot reconcile the differences. A theoretical model has been developed for the growth of a single vapour bubble on a superheated wall in an electric field, leading to a numerical simulation based on the level-set method. The model includes matching of sub-models for the micro- and macro-regions, conduction in the wall, distortion of the electric field by the bubble, the temperature dependence of electrical properties and free-charge generation. In the present form of the model, some of these effects are realised in an approximate form. The capability to investigate dry-spot formation and wall temperature changes that might lead to CHF has been demonstrated.  相似文献   

6.
A model for bubble growth in a uniformly superheated liquid is presented which is valid for both inertia and heat diffusion controlled growth. Two different heat transfer equations are considered: The Fourier (parabolic) equation and the hyperbolic heat conduction equation. It is shown that for short times, bubble growth prediction based on the Fourier equation, differs considerably from that based on the hyperbolic heat conduction equation. For long times, both predictions coincide. Using the hyperbolic heat conduction equation is important for bubble growth prediction in fluids like Helium II, in which thermal disturbances have a low speed of propagation. In such liquids the second sound effects must be considered long after the inertia and dynamic effects become unimportant.The validity of using a semi-infinite approximation to the heat conduction problem during the bubble growth period is investigated. An analytical solution in spherical coordinates reveals that the ratio between the spherical and semi-infinite solutions is a function of the Jakob number. Results of the present model, using the Fourier equation, are shown to be in better agreement with data for bubble growth in water, than other published solutions.
Beschreibung des Blasenwachstums durch Wärmeleitungs-Gleichungen von hyperbolischer und parabolischer Form
Zusammenfassung Es wird ein Modell für Blasenwachstum in überhitzter Flüssigkeit vorgestellt, das sowohl bei durch Trägheit als auch bei durch Wärmediffusion kontrolliertem Blasenwachstum verwendbar ist. Zwei unterschiedliche Wärmeübertragungsbeziehungen werden in Betracht gezogen: Die Fourier-Gleichung (parabolisch) und eine Wärmeleitungs-Gleichung in hyperbolischer Form.Es wird gezeigt, daß die Modellergebnisse basierend auf der Fourier-Gleichung für schnelle Blasenwachstumszeiten signifikant von vergleichbaren Ergebnissen basierend auf der hyperbolischen Gleichung abweichen, während sie für langsames Wachstum mehr oder weniger identisch sind. Die Verwendung der hyperbolischen Wärmeleitungsgleichung in Blasenwachstumsmodellen ist vor allem in Fluiden wie Helium II von Bedeutung, wo thermische Störungen eine geringe Ausbreitungsgeschwindigkeit haben. Hier müssen die second sound-Effekte noch berücksichtigt werden, wenn die dynamischen und die Einflüsse der Trägheit schon vernachlässigbar sind.Es wurde untersucht, ob die Benutzung einer semi-unendlichen Approximation des Wärmeleitungsproblems während des Blasenwachstums zulässig ist. Eine analytische Lösung in Kugelkoordinaten zeigt, daß das Verhältnis zwischen letzteren und semi-unendlichen Ergebnissen eine Funktion der Jakob-Zahl ist.Schließlich wird gezeigt, daß die Resultate des vorgestellten Modells bei Benutzung der Fourier-Gleichung experimentelle Ergebnisse von Blasenwachstum in Wasser besser wiedergeben als andere bekannte Lösungen.

Nomenclature a thermal diffusivity - B s sphericity correction factor - b temperature decay coefficient - c propagation speed of thermal disturbances - E parameter, Eq. (37) - f function of the dimensionless time and bubble radius, Eq. (34) - h v heat of evaporation - Ja Jakob number, Eq. (35) - k thermal conductivity - N /T - P pressure - P i initial system pressure - P v vapour pressure - Q* dimensionless heat flux (Stanton number) - q heat flux - transformed heat flux - q wL heat flux into the liquid at the bubble boundary - R bubble radius - R* dimensionless bubble radius, Eq. (16) - R 0 initial (critical) bubble radius - r radial coordinate - s the Laplace transform parameter - T temperature - T i initial liquid temperature - T s saturation temperature - T v instantaneous bubble temperature - T 0 initial saturation temperature,T s (0) - T temperature difference,T iT s (0) - t time - t* dimensionless time, Eq. (16) - y dimensionless distance from the bubble surface - Z constant of integration, Appendix A - a proportionality constant - temperature function, Eq. (8) - transformed temperature function - v vapour density - L liquid density - vi initial vapour density - relaxation time,a/c 2 - normalized temperature distribution, Eq. (15)  相似文献   

7.
An integrated experimental and modeling/simulation approach was developed to investigate and secure a quantified knowledge of the impact of high temperature exposures on the stability of residual stresses in a laser shock peened (LSP) high temperature aero-engine alloy, IN718 SPF (super-plastically formed). Single dimple LSP and overlap LSP treatments were carried out utilizing a Nd:Glass laser (λ?=?1.052 μm), and subsequent heat treatments on the LSP-treated coupons were conducted at different temperatures between 550 and 700 °C. A 3-D nonlinear finite element (FE) computational model and the rate-dependent Johnson-Cook material model were calibrated using the experimental results of residual stress from the single dimple LSP and thermal relaxation treatments, and were further extended to the overlap LSP treatment case. Both experimental and FE simulations show that: a) a high level of compressive residual stress (~700 MPa at surface) and residual stress depth (~0.4–0.6 mm) were achieved following LSP, and b) the overlap LSP treatment gave higher residual stress and greater depth. The magnitudes of the initial residual stress (and plastic strain), heating temperature and exposure time were identified as the key parameters controlling the thermal relaxation behavior. The stress relaxation mainly occurs initially before 20 min exposure and the extent of relaxation increases with an increase in temperature and a higher magnitude of the initial as-peened residual stress. In addition, in regions deeper than ~300 μm or after initial thermal exposure where the residual stress was lower than ~300 MPa, stress relaxation was found to be negligible. Kinetic analysis of the experimental thermal relaxation data based on Zener-Wert-Avrami model gave an activation enthalpy of 2.87 to 3.77 eV, which is near that reported in the literatures for volume and/or substitutional solute diffusion in Nickel. These results suggest that thermal relaxation of the LSP-induced residual stress occurs by a creep-like mechanism involving recovery, rearrangement and annihilation of dislocations by climb.  相似文献   

8.
采用实验方法研究超高分子量聚乙烯(UHMWPE)材料,在不同温度、应变率和初始应变的条件下进行单轴压缩应力松弛实验,得出松弛应力与时间成非线性关系,且温度越高、应变率越大、初始应变越小,则最终稳定的应力值越小的结论.采用时间分数阶粘弹性模型,结合Boltzmann叠加原理推导出UHMWPE材料在整个加载段及松弛段的应力响应函数,并与实验数据最小二乘拟合.结果表明,时间分数阶Scott-Blair模型能很好地描述UHMWPE材料的粘弹性行为.  相似文献   

9.
在复合材料结构中起绝热、增韧作用的绝缘夹层,其加工厚度现在已达到纳米量级,原有的傅立叶热传导定律已无法描述其热能的传递行为,需从分子动力学、量子力学从发,针对不同研究对象建立相应的热传导模型.针对超薄绝缘夹层结构,将纯声子辐射模型和傅立叶热传导模型相结合数值求解热冲击条件下的温度场,并作为热载荷,用于求解结构上表面应力和夹层裂纹驱动力,其结果与只采用傅立叶热传导模型计算的结果相比较, 分析了物理参数对温度、应力和裂纹驱动力的影响.结果表明:与只采用傅立叶热传导模型计算的结果相比,按EPRT计算的热传导明显变慢,其表面剥离应力偏大,而夹层裂纹驱动力偏小.同时随着松弛时间增大和声子速度的降低,热传导减缓,表面横向剥离应力增大,超薄绝缘夹层内裂纹尖端驱动力减小.  相似文献   

10.
Stress relaxation tests have been carried out on a blue, pipe grade PE 80 medium density polyethylene (BP Chemicals), to provide thermo-viscoelastic rheology for use in calculating thermal stresses in pipe production. Stresses up to 4 MPa were used, with strains up to about 2%, in tests at temperatures from 23° to 90°C. Within this range a linear viscoelastic model was applicable, provided the initial ramp strain rate was less than 7×10–5 s–1. The stress relaxation data was fitted directly by a model incorporating an elastic response to volumetric strains, and a generalised linear solid model, consisting of two Maxwell elements and a purely elastic element in parallel, for deviatoric strains. Arrhenius type temperature dependence of relaxation times and shear moduli is found, and within experimental accuracy the temperature dependence of all these model parameters is the same. As a consequence, and provided that the duration of the strain ramp is sufficiently short relative to relaxation times, the model leads to time-temperature superposition of the relaxation moduli, using the same shift factor on both the response magnitude and time axes.  相似文献   

11.
田北晨  李林敏  陈杰  黄彪  曹军伟 《力学学报》2022,54(6):1557-1571
空化的多尺度效应是一种涉及连续介质尺度、微尺度空化泡以及不同尺度间相互转化的复杂水动力学现象, 跨尺度模型的构建是解析该多尺度现象的关键. 本文基于欧拉-拉格朗日联合算法, 通过界面捕捉法求解欧拉体系下大尺度空穴演化, 通过拉格朗日体系下离散空泡模型求解亚网格尺度离散空泡的运动及生长溃灭. 同时, 通过判断空泡与网格尺度间的关系判定不同尺度空化泡的求解模型. 基于建立的多尺度算法对绕NACA66水翼空化流动进行模拟, 将数值结果与实验进行对比, 验证了数值计算方法的准确性. 研究结果表明, 离散空泡数量与空化发展阶段密切相关, 在附着型片状空穴生长阶段, 离散空泡数量波动较小, 离散空泡主要分布在气液交界面位置; 在回射流发展阶段, 离散空泡逐渐增加并分布在回射流扰动区; 在云状空穴溃灭阶段, 离散空泡数量增多且主要分布在气液掺混剧烈的空化云团溃灭区. 在各空化发展阶段, 离散空泡直径概率密度函数均符合伽玛分布. 空化湍流流场特性对拉格朗日空泡空间分布具有重要影响, 离散空泡主要分布在强湍脉动区、旋涡及回射流发展区域.   相似文献   

12.
Small amplitude surface tension driven oscillations of a spherical bubble in a dilute polymer solution are considered. The rheological properties of the liquid are modelled by using a 3-constant constitutive equation of the Oldroyd type. The Laplace transform of the solution of the initial value problem is inverted numerically. As in the Newtonian fluid case, both a discrete and a continuous spectrum occurs. In addition to the non-dimensional parameters in the corresponding problem for a Newtonian fluid, the results depend on two other parameters: the ratio of the relaxation time of the polymer solution and the time scale of the flow (the Deborah number) and the product of the polymer concentration and the intrinsic viscosity. For small bubbles in an aqueous solution having a small relaxation time, significant additional damping is found even for dilute solutions.  相似文献   

13.
The present paper describes the dynamic process of a vapour bubble moving in a non-uniform flow field. The coupling between the bubble moving as a whole and the deformation of the bubble surface is considered. The effect of the pressure gradient on the bubble movement is analysed. For a given flow field the numerical calculation is carried out until the vapour bubble is split by a micro-jet.  相似文献   

14.
《力学快报》2023,13(3):100438
The interaction of multiple bubbles is a complex physical problem. A simplified case of multiple bubbles is studied theoretically with a bubble located at the center of a circular bubble cluster. All bubbles in the cluster are equally spaced and own the same initial conditions as the central bubble. The unified theory for bubble dynamics [35] is applied to model the interaction between the central bubble and the circular bubble cluster. To account for the effect of the propagation time of pressure waves, the emission source of the wave is obtained by interpolating the physical information on the time axis. An underwater explosion experiment with two bubbles of different scales is used to validate the theoretical model. The effect of the bubble cluster with a variation in scale on the pulsation characteristics of the central bubble is studied.  相似文献   

15.
This work presents a sensitivity analysis for cavitation processes, studying in detail the effect of various model parameters on the bubble collapse. A complete model (Hauke et al. Phys Rev E 75:1–14, 2007) is used to obtain how different parameters influence the collapse in SBSL experiments, providing some clues on how to enhance the bubble implosion in real systems. The initial bubble radius, the frequency and the amplitude of the pressure wave are the most important parameters determining under which conditions cavitation occurs. The range of bubble sizes inducing strong implosions for different frequencies is computed; the initial radius is the most important parameter characterized the intensity of the cavitation processes. However, other parameters like the gas and liquid conductivity or the liquid viscosity can have an important effect under certain conditions. It is shown that mass transfer processes play an important role in order to correctly predict the trends related with the effect of the liquid temperature, which translates into the bubble dynamics. Moreover, under some particular circumstances, evaporation can be encountered during the bubble collapse; this can be profitably exploited in order to feed reactants when the most extreme conditions inside the bubbles are reached. Thus, this paper aims at providing a global assessment of the effect of the different parameters on the entire cycle of a single cavitating spherical bubble immersed in an ultrasonic field. This work has been partially supported by Ministerio de Ciencia y Tecnologia, under grant number CTM2004-06184-C02-02.  相似文献   

16.
Equilibrium conditions of a single-component two-phase-system having a plane or a concave interface interacting with a solid wall are the major focus of the paper. The concave interface is termed “closed”, if it forms a vapour bubble, and “opened”, in the case of a common liquid meniscus. The equations derived describe the equilibrium temperature in dependence of the wall distance and the interfacial curvature. They show that an attraction between the vapour-liquid interface and the wall rises the equilibrium temperature. At comparable conditions, the equilibrium temperature is higher for the closed than for the opened interface. Received on 18 December 1997  相似文献   

17.
因自辐照效应的影响,一些材料内部会产生大量的氦泡,关注这些氦泡对材料力学性能的影响是目前损伤破坏研究中的重要问题之一。结合相关文献的实验结果,采用耦合材料初始损伤、孔洞尺寸及惯性影响的损伤模型,对该问题进行了数值分析。结果显示:氦泡的内压及材料变形中温度的变化对损伤发展的影响很小;材料的初始损伤越大,材料内部应力减小得越快,损伤增长得越慢;因惯性的影响,初始氦泡越大,损伤增长相对较慢。因此,分析含氦泡材料的层裂损伤问题需要重点关注材料初始氦泡大小、初始损伤以及损伤演化过程中惯性的影响。  相似文献   

18.
The multivelocity effects associated with the behavior of gas or vapor bubbles in a region with high pressure gradients typical of the flows around a cavity in which the pressure is higher than that in the surrounding space are considered. For a low volume bubble concentration, the problem of fluid flow perturbation by the bubbles is examined. For gas bubbles, it is shown that taking multivelocity effects into account considerably reduces the additional jet momentum. It is found that, with time, the temperature distribution in the wake behind a vapor bubble becomes nonmonotonic and the maximum temperature may even exceed the initial bubble temperature. It is demonstrated that the bubbles may accumulate and a flow regime with a sharply pronounced two-phase jet extending to the outer edge of the main liquid jet may develop. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 87–100, January–February, 1998. The work received financial support from the Russian Foundation for Fundamental Research (project No.96-01-01442).  相似文献   

19.
为评价60Si2Mn螺旋压缩弹簧的室温松弛特性,利用InstronE3000K8953型小吨位电子动静态疲劳试验机,对其在不同温度和初始应力水平条件下进行了高温压缩加速应力松弛试验,研究了环境温度、初始应力水平对松弛行为的影响.基于粘弹性体模型,揭示了应力松弛过程中弹性应变向塑性应变的转化特性与塑性应变随松弛时间的变化规律.在对应力松弛前后弹簧丝材金相和TEM微结构进行对比分析的基础上,探讨了应力松弛的微观机制.结果表明,环境温度与初始应力水平对松弛速率具有显著影响.基于应力松弛过程的热激活特性,建立了60Si2Mn螺旋压缩弹簧的贮存寿命预测方程,并对不同应力水平下弹簧的室温和高温贮存寿命进行了合理预测.  相似文献   

20.
The Boltzmann-Bhatnagar-Gross-Krook(BGK)model is investigated for its validity regarding the collision term approximation through relaxation evaluation. The evaluation is based on theoretical analysis and numerical comparison between the BGK and direct simulation Monte Carlo(DSMC) results for three specifically designed relaxation problems. In these problems, one or half component of the velocity distribution is characterized by another Maxwellian distribution with a different temperature. It is analyzed that the relaxation time in the BGK model is unequal to the molecular mean collision time. Relaxation of component distribution fails to involve enough contribution from other component distributions, which makes the BGK model unable to capture details of velocity distribution, especially when discontinuity exists in distribution. The BGK model,however, predicts satisfactory results including fluxes during relaxation when the temperature difference is small. Particularly, the model-induced error in the BGK model increases with the temperature difference, thus the model is more reliable for low-speed rarefied flows than for hypersonic flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号