首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The dependence of the water self-diffusion coefficients as well as of the proton spin-lattice and spin-spin relaxation rates on the concentration have been studied in the gelatin-water system and in hydrated native collagen. The bound and free water fractions and the corresponding spin-spin and spin-lattice relaxation rates have been determined within the multi-phase water proton exchange model. Various theoretical models for the water proton cross-relaxation to the biopolymer have been studied and the results compared with the observed Larmor frequency dependence of the water proton spin-lattice relaxation rate.  相似文献   

2.
We have studied the hydration dependence of the internal protein dynamics of hen egg white lysozyme by naturally abundant13C and1H nuclear magnetic resonance (NMR) relaxation. NMR relaxation timesT 1, off-resonanceT 1p and proton-decoupled on-resonanceT 1p (only for carbon expriments) were measured in the temperature range from 0 to 50°C. The spectral resolution in carbon cross-polarization magic angle spinning spectrum allows to treat methine, methylene and methyl carbons separately, while proton experiments provide only one integral signal from all protons at a time. The relaxation times were quantitatively analyzed by the well-established correlation function formalism and model-free approach. The whole set of the data could be adequately described by a model assuming three types of motion having correlation times around 10?4, 10?9 and 10?12 s. The slowest process originated from correlated conformational transitions between different energy minima, the intermediate process could be identified as librations within one energy minimum, and the fastest one is a fast rotation of methyl protons the symmetry axis of methyl groups. A comparison of the dynamic behavior of lysozyme and polylysine obtained from a previous study (A. Krushelnitsky, D. Faizullin, D. Reichert, Biopolymers 73, 1–15, 2004) reveals that in the dry state both biopolymers are rigid on both fast and slow time scales. Upon hydration, lysozyme and polylysine reveal a considerable enhancement of the internal mobility, however, in different ways. The side chains of polylysine are more mobile than those of lysozyme, whereas for the backbone a reversed picture is observed. This difference correlates with structural features of lysozyme and polylysine discussed in detail. Due to the presence of a fast spin diffusion, the analysis of proton relaxation data is a more difficult task. However, our data demonstrate that the correlation functions of motion obtained from carbon and proton experiments are substantially different. We explained this by the fact that these two types of NMR relaxation experiments probe the motion of different internuclear vectors. The comparison of the proton data with our previous results on proton relaxation timesT 1 measured over a wide temperature range indicates that at low temperatures lysozyme undergoes structural rearrangements affecting the amplitudes and/or activation energies of motions.  相似文献   

3.
4.
In 1990, Van Den Enden et al. proposed a method for the determination of water droplet size distributions in emulsions using a pulsed-field-gradient nuclear magnetic resonance (PFG-NMR) T1-weighted stimulated-echo technique. This paper describes both the T1-weighted spin-echo sequence, an improved method based on this earlier work, and, the standard PFG spin-echo sequence. These two methods were compared for water self-diffusion coefficient measurement in the fatty protein concentrate sample used as a 'cheese model.' The transversal and longitudinal relaxation parameters T1 and T2 were determined according to the temperature and investigated for each sample; fat-free protein concentrate sample, pure anhydrous milk fat, and fatty protein concentrate sample. The water self-diffusion in fat-free protein concentrate samples followed a linear behavior. Consequently, the water self-diffusion coefficient could be easily characterized for fat-free protein concentrate samples. However, it seemed more complicated to obtain accurate water self-diffusion in fatty protein concentrate samples since the diffusion-attenuation data were fitted by a bi-exponential function. This paper demonstrates that the implementation of the T1-weighted spin-echo sequence, using the different T1 properties of water and fat phases, allows the accurate determination of water self-diffusion coefficient in a food product. To minimize the contribution of the 1H nuclei in the fat phase on the NMR echo signal, the fat protons were selectively eliminated by an additional 180 degrees pulse. This new method reduces the standard errors of diffusion data obtained with a basic spin-echo technique, by a factor of 10. The effectiveness of the use of the T1-weighted spin-echo sequence to perform accurate water self-diffusion coefficients measurement in fatty products is thus demonstrated.  相似文献   

5.
NMR proton relaxation rates of normal and 17O enriched water in a mixture of 68 mol% water and 32 mol% [2H6]dimethylsulphoxide were measured for temperatures between 298 K and 183 K. In the range between 240 K and 204 K the limit of fast proton-proton exchange between H16 2O and H17 2O is not obeyed, and relaxation curves deviate from mono-exponential behaviour. By fitting the relaxation curves to a model of NMR two-phase relaxation the proton-proton exchange rate within the aqueous component could be obtained. With decreasing temperature, proton-proton exchange slows down and a residence time of about 125 ms at 215 K is found, but it becomes faster again for still lower temperatures. From the phase-averaged relaxation rates of water in the 17O enriched mixtures, the 17O induced proton relaxation rate was derived as a function of temperature. This yields the rotational correlation times of the water molecule in the mixture and the dipolar spin-lattice coupling parameter. The latter is considerably lower than the one predicted from the geometry of water.  相似文献   

6.
Using nmr pulse techniques the temperature dependence of proton spin relaxation times T1 and T2 of n-butene and butane molecules adsorbed on CaNaA zeolites with different content of Ca++ ions has been investigated. The observed diminution of correlation times with rising degree of Ca++ exchange can only be explained if translational motions, i.e. jumps between the supercages, dominate the proton spin relaxation of the adsorbates. Peculiarities in the microdynamical behaviour of the various n-butenes are in accordance with the model of electrostatic interactions between molecular dipole moments and electric fields in A zeolites as proposed by Tempère and Imelik in order to explain the stereoselectivity of the isomerization of n-butenes in A zeolites. Applying Torrey's well-known theory of nmr relaxation as dominated by translational jumps with arbitrary lengths, the mean time between two subsequent jumps has been estimated. In combination with measurements of self-diffusion coefficients by Kärger and Renner, these values lead to mean jump lengths which are reasonable compared with the distance of two neighbouring large zeolitic cavities. In order to interpret the methyl reorientation which dominates the longitudinal proton spin relaxation of the adsorbed hydrocarbons at lower temperatures, a model for calculating the intermolecular contribution to the relaxation rate has been discussed.  相似文献   

7.
Nuclear magnetic resonance (NMR) longitudinal (T1) and transverse (T2) relaxation parameters have been evaluated for protein solutions, cellular suspensions and tissues using both data from our laboratory and the extensive literature. It is found that this data can be generalized and explained in terms of three water phases: free water, hydration water, and crystalline water. The proposed model which we refer to as the FPD model differs from similar models in that it assumes that free and hydration water are two phases with distinct relaxation times but that T1 = T2 in each phase. In addition there is a single correlation time for each rather than a distribution as assumed in most other models. Longitudinal decay is predicted to be single exponent in character resulting from a fast exchange between the free and hydration compartments. Transverse decay is predicted to be multiphasic with crystalline (T2 10 μsec), hydration (T2 10 sec) and free (T2 100 sec) water normally visible. The observed or effective transverse relaxation times for both the hydration and free water phases are greatly affected by the crystalline phase and are much shorter than the inherent relaxation times.  相似文献   

8.
The water molecules in acid and salt forms of perfluorinated sulfocation membranes (MF-4SK) have been investigated by employing nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. The mobility parameters, correlation time and activation energy of water molecules were estimated from the results of the temperature dependence of1H relaxation time and compared with water self-diffusion coefficients obtained with pulsed field gradient NMR. The NMR data showed no frozen unbound water in membranes at low water content with an amount of water molecules per sulfonate groupn being comparable to the cationic hydration numberh o, whereas DSC thermograms showed peaks which are usually interpreted as a water fusion phenomenon in the membranes. The diffusion mechanism of water molecules below 260 K is different from that above 300 K due to additional hydrogen bonds in water clusters at the low-temperature region.  相似文献   

9.
Water doped with 10?2 mol of KOH was cooled to temperatures at which most of the solution freezes to form hexagonal ice. Using proton and deuteron spin–lattice relaxometry as well as static field gradient diffusometry, it was found that a liquid-like phase coexists with the crystal down to below 200 K. The ionic dopants are expelled from the crystalline phase and form a KOH-enriched aqueous solution probably in the form of inclusions within the ice crystal. Its self-diffusion coefficient is only slightly smaller than that of nominally pure water. Motional correlation times were determined on the basis of spin–lattice relaxation times and compared with previous electrical conductivity and calorimetry results.  相似文献   

10.
The structure of polyacrylamide gels was studied using proton spin–lattice relaxation and PFG diffusion methods. Polyacrylamide gels, with total polymer concentrations ranging from 0.25 to 0.35 g/ml and crosslinker concentrations from 0 to 10% by weight, were studied. The data showed no effect of the crosslinker concentration on the diffusion of water molecules. The Ogston–Morris and Mackie–Meares models fit the general trends observed for water diffusion in gels. The diffusion coefficients from the volume averaging method also fit the data, and this theory was able to account for the effects of water-gel interactions that are not accounted for in the other two theories. The averaging theory also did not require the physically unrealistic assumption, required in the other two theories, that the acrylamide fibers are of similar size to water molecules. Contrary to the diffusion data,T1relaxation measurements showed a significant effect of crosslinker concentration on the relaxation of water in gels. The model developed using the Bloch equations and the volume averaging method described the effects of water adsorption on the gel medium on both the diffusion coefficients and the relaxation measurements. In the proposed model the gel medium was assumed to consist of three phases (i.e., bulk water, uncrosslinked acrylamide fibers, and a bisacrylamide crosslinker phase). The effects of the crosslinker concentration were accounted for by introducing the proton partition coefficient,Keq, between the bulk water and crosslinker phase. The derived relaxation equations were successful in fitting the experimental data. The partition coefficient,Keq, decreased significantly as the crosslinker concentration increased from 5 to 10% by weight. This trend is consistent with the idea that bisacrylamide tends to form hydrophobic regions with increasing crosslinker concentration.  相似文献   

11.
In contrast with the usual assumption that proton spin relaxation in glycerol originates from rotational molecular diffusion, quantitative evaluation of the temperature and Larmor frequency dependence in the ranges ?30 °C to+70 °C and 10 kHz to 120 MHz, respectively, gives extensive agreement with Fick's translational random walk model. This observation is supported by direct measurements of the self-diffusion constant by means of the pulse gradient method, which reveals the same activation barrier as relaxation spectroscopy.  相似文献   

12.
The hydration pattern of controlled pore glass, with pore diameter of 237 Å, was investigated using nuclear magnetic resonance. Water proton spin–spin relaxation decay curves were monitored and modeled as two-component exponential decays as a function of hydration. The results are consistent with a geometric model involving a surface water layer and a bulk-like liquid fraction in the form of a plug. The amount of surface water increases as the sample hydrates, until hydration reached approximately a monolayer, at which point a water plug starts to form in the pore, and grow in length at the expense of the surface layer. The results are also analyzed in terms of, and compared to, a recently developed puddle pore-filling model [S.G. Allen, et al. J. Chem. Phys. 106 (1997) 7802–7809].  相似文献   

13.
The proton MAS NMR spectra in MCM-41 at low hydration levels (less than hydration amounting to one water molecule per surface hydroxyl group) show complex proton resonance peak structures, with hydroxyl proton resonances seen in dry MCM-41 disappearing as water is introduced into the pores and new peaks appearing, representing water and hydrated silanol groups. Surface hydroxyl group–water molecule chemical exchange and chemical shift averaging brought about by a water molecule visiting different surface hydrogen bonding sites have been proposed as possible causes for the observed spectral changes. In this report a simple model based on chemical shift averaging, due to the making and breaking of hydrogen bonds as water molecules move on the MCM-41 surface, is shown to fully reproduce the NMR spectra, both as a function of hydration and temperature. Surface proton–water proton chemical exchange is not required in this model at low hydration levels.  相似文献   

14.
We study the dynamics of the first hydration shell of lysozyme to determine the role of hydration water that accompanies lysozyme thermal denaturation. We use nuclear magnetic resonance spectroscopy to investigate both the translational and rotational contributions. Data on proton self-diffusion and reorentational correlation time indicate that the kinetics of the lysozyme folding/unfolding process is controlled by the dynamics of the water molecules in the first hydration shell. When the hydration water dynamics change, because of the weakening of the hydrogen bond network, the three-dimensional structure of the lysozyme is lost and denaturation is triggered. Our data indicates that at temperatures above approximately 315 K, water behaves as a simple liquid and is no longer a good solvent.  相似文献   

15.
The aim of the present study was to apply nuclear magnetic resonance (NMR) relaxation measurements for understanding the microstructure evolution of cement paste during hydration. Ordinary Portland cement powder was mixed with double-distilled water, and hydration process was analyzed via 1H proton NMR spin–spin relaxation time. In order to induce strong modification of the rate of hydration, water-to-cement ratio, curing temperature and cement fineness were varied. The evolution of the NMR spin–spin relaxation time, T 2, of hydrating water versus the hydration time was monitored from the very first few minutes after the mixing up to several hours. Authors' address: Marcella Alesiani, Department of Physics, University La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy  相似文献   

16.
Measurements of the proton spin-lattice relaxation times have been made as a function of concentration and temperature in aqueous solutions of 7LiCl and 6LiCl. The difference in the relaxation times for two isotopic solutions of the same concentration and temperature is small, corresponding to a difference n reciprocal relaxation times of 0·004 sec-1. c at 25°c, where c is the molarity of the solutions. This value decreases with increasing temperature. It is shown that the difference in relaxation times arises solely from the magnetic dipole interaction between the 7Li ion nucleus and water protons. The concept of a long-lived, rigid hydrated complex around the Li ion is shown to be inconsistent with the results.  相似文献   

17.
The observation of a rotating frame Larmor frequency dependence in the proton spin relaxation of glycerol lends support to a recent study of proton spin relaxation in this substance. Comparison of the data to recent theories describing spin relaxation by translational diffusion strongly suggest that this is the dominant relaxation process in glycerol near room temperature. In addition, the measurement of the self-diffusion coefficient of glycerol, at a temperature lower than has been previously reported, indicates that this rotating frame technique may be useful in the study of diffusion in viscous media.  相似文献   

18.
The dielectric properties of a series of homoionic alkali-exchanged montmorillonites were studied at different treatment temperatures and various water loadings by means of complex impedance spectroscopy. To date, however, this method has been underutilized in clay minerals studies. The main objective of the present work is to understand the relaxation mechanisms of water molecules interacting with different hydration centers in clay minerals, with a view to eventually control their interactions with the alkali extra-framework cations. The other part of our study is to study the dielectric properties such as real and imaginary parts of dielectric permittivity, loss tangent, and ac conductivity in the frequency range 10?2–106?Hz and temperature range 173–333?K of these clay minerals. The obtained results have been discussed in terms of the Jonscher model.  相似文献   

19.
Microstructure and texture of cementitious porous materials   总被引:1,自引:0,他引:1  
We have characterized the microstructure of different cementitious materials (white and Portland cement pastes, mortars, concretes) by different magnetic resonance techniques. In particular, we show how the measurement of proton nuclear magnetic spin-lattice relaxation as a function of magnetic field strength (and hence nuclear Larmor frequency) can provide reliable information on the dynamics of proton species at the surface of CSH, the specific surface area and the pore size distribution throughout the progressive hydration of cement-based materials. The measurement does not require any drying temperature modification and is sufficiently fast to be applied continuously during the progressive hydration of the material. Coupling this method with the standard proton nuclear spin relaxation and high-resolution NMR allows us to follow the development of microscale texture within the material.  相似文献   

20.
生物分子结合水的结构与动力学研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
叶树集  李传召  张佳慧  谈军军  罗毅 《物理学报》2019,68(1):13101-013101
生物结合水在维护生物大分子的结构、稳定性以及调控动力学性质和生理功能等方面起着决定性的作用.从分子水平上理解生物结合水分子的结构与性质及其影响生物结构和功能的本质与规律,是揭示生物大分子生理功能机理的关键.目前生物结合水的结构与动力学相关研究尚处于初步阶段.本文从三个方面介绍当前生物结合水的相关研究及其进展:首先介绍结合水对蛋白质折叠、质子给予与迁移、配体结合与药物设计以及变构效应等生物结构和功能的影响;然后介绍生物分子周围的水分子结构研究情况;最后从时间尺度、动力学属性、生物分子与水分子之间的动力学耦合作用、蛋白质表面结合水次扩散运动等角度介绍生物分子水合动力学的研究进展,并归纳出一些目前尚待进一步解决的科学问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号