首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 166 毫秒
1.
基于密度泛函理论框架下的第一性原理计算方法,系统的研究了碱金属Rb原子修饰具有空位缺陷h-BN单层体系的储氢性能.发现Rb原子可稳定吸附在h-BN单层的B单空位缺陷(VB)上,且Rb原子间无团簇倾向,单个Rb原子最多可稳定吸附5个H2分子,H2分子平均吸附能在0.18-0.21 eV范围内.电子结构分析表明H2分子主要通过极化机制和轨道杂化作用吸附在Rb修饰的缺陷h-BN单层体系上.Rb双侧修饰缺陷h-BN单层体系的理论储氢质量比可以达到5.0 wt%.基于范特霍夫方程和从头算分子动力学(AIMD)模拟对储氢体系的热力学稳定性进行了进一步的研究.  相似文献   

2.
利用密度泛函理论研究锂原子修饰线型碳原子链团簇Li2Cm(m=2-8)的结构及其储氢性能.结果表明,Li原子可键合于碳链团簇的两端,Li原子本身不发生团聚,氢在Li2Cm(m=2-8)中能以分子形式吸附,每一个Li原子最多可吸附5个氢分子,氢分子的平均吸附能为0.460~2.276 kcal·mol-1.其中Li原子修饰C2团簇的质量储氢分数最大,为34.72 wt%,表明了它在常温常压条件下作为储氢材料的可行性.  相似文献   

3.
唐春梅  王成杰  高凤志  张轶杰  徐燕  巩江峰 《物理学报》2015,64(9):96103-096103
本文使用密度泛函理论(density functional theory, DFT)中的广义梯度近似(generalized gradient approximation, GGA)研究了经碱金属原子Li、过渡金属原子Ti和Fe原子修饰的富勒烯C18B2M(M=Li, Ti, Fe)的储氢性能. 研究发现, C18B2由于B的替代掺杂, 比C20对金属原子具有更高的结合能. 由平均吸附能分析可知: C18B2Li对H2的吸附能力较弱, C18B2Fe对H2的吸附能力过强, 而C18B2Ti对H2的平均吸附能介于0.45-0.59 eV 之间, 介于物理吸附和化学吸附之间 (0.2-0.6 eV), 因此可以实现常温下的可逆储氢. C18B2M(M=Li, Ti, Fe)能够吸附的H2数目最多分别为4, 6和4. 由储氢机理分析可知: C18B2Li主要通过碱金属离子激发的静电场来吸附H2, 而C18B2Ti和C18B2Fe主要通过金属原子与H2之间的Kubas作用来吸附H2. 由于C18B2Ti既有较大的储氢数目, 又可以实现可逆储氢, 因此有望开发成新型纳米储氢材料.  相似文献   

4.
采用密度泛函方法对锂原子修饰线型硼原子链团簇Li_2B_n(n=2~8)的结构及其储氢性能进行理论研究.结果显示,Li原子可键合于硼链团簇的两端,氢能以分子形式吸附在Li原子周围,每一个Li原子最多可吸附4个氢分子,氢分子的平均吸附能为2.020~2.832 kcal.mol~(-1).其中Li原子修饰B2小团簇的质量储氢分数最大,为31.24 wt%,表明在常温常压条件下它有可能成为一种潜在的储氢媒介.  相似文献   

5.
采用密度泛函方法对锂原子修饰线型硼原子链团簇Li2Bn(n=2~8)的结构及其储氢性能进行理论研究. 结果显示, Li原子可键合于硼链团簇的两端,氢能以分子形式吸附在Li原子周围, 每一个Li原子最多可吸附4个氢分子, 氢分子的平均吸附能为2.020 ~ 2.832 kcal.mol-1. 其中Li原子修饰B2小团簇的质量储氢分数最大,为31.24 wt%,表明在常温常压条件下它有可能成为一种潜在的储氢媒介.  相似文献   

6.
采用密度泛函理论中的广义梯度近似研究C6Li吸附H2O分子并将之进行分解的催化过程.几何优化发现:Li原子最稳定的吸附位置是位于C原子顶位上方.研究表明,第一个H2O分子吸附在C6Li上需要克服1.77 eV的能量势垒,然后分解为H和OH且与Li原子成键.当吸附第二个H2O分子时,第二个H2O分子需要克服1.2 eV的能量势垒分解为H和OH,其中H与Li原子上的H原子结合成H2,OH则替代Li原子上的H结合在Li原子上.因此C6Li可以作为催化剂将H2O分子进行分解得到H2.分析可知:C6Li主要是通过Li原子与H2O之间形成的偶极矩作用来吸附H2O分子,与C60Li12的储氢机制类似.研究结果可为储氢材料的制备提供一个新的思路.  相似文献   

7.
利用密度泛函理论研究锂原子修饰线型碳原子链团簇Li2Cm(m=2—8)的结构及其储氢性能. 结果表明, Li原子可键合于碳链团簇的两端,Li原子本身不发生团聚,氢在Li2Cm (m=2—8)中能以分子形式吸附,每一个Li原子最多可吸附5个氢分子,氢分子的平均吸附能为0.460 ~ 2.276 kcal.mol-1. 其中Li原子修饰C2团簇的质量储氢分数最大,为34.72 wt%,表明了它在常温常压条件下作为储氢材料的可行性.  相似文献   

8.
周晓锋  方浩宇  唐春梅 《物理学报》2019,68(5):53601-053601
本文使用密度泛函理论中的广义梯度近似对扩展三明治结构graphene-2Li-graphene的几何结构、电子性质和储氢性能进行计算研究.计算得知:位于单层石墨烯中六元环面心位上方的单个Li原子与基底之间的结合能最大(1.19 eV),但小于固体Li的实验内聚能(1.63 eV),然而,在双层石墨烯之间的单个Li原子与基底的结合能增加到3.41 eV,远大于固体Li的实验内聚能,因此位于双层石墨烯之间的多个Li原子不会成簇,有利于进一步储氢.扩展三明治结构graphene-2Li-graphene中每个Li原子最多可以吸附3个H_2分子,储氢密度高达10.20 wt.%,超过美国能源部制定的5.5 wt.%的目标.该体系对1—3个H_2分子的平均吸附能分别为0.37,0.17和0.12 eV,介于物理吸附和化学吸附(0.1—0.8 eV)之间,因此该体系可以实现常温常压下对H_2的可逆吸附.通过对态密度分析可知,每个Li原子主要通过电场极化作用吸附多个H_2分子.动力学和巨配分函数计算表明graphene-2Li-graphene结构对H_2分子具有良好的可逆吸附性能.该研究可以为开发良好的储氢材料提供一个好的研究思路,为实验工作提供理论依据.  相似文献   

9.
利用密度泛函理论研究锂原子修饰线型碳原子链团簇Li2Cm(m=2-8)的结构及其储氢性能.结果表明, Li原子可键合于碳链团簇的两端,Li原子本身不发生团聚,氢在Li2 Cm ( m=2-8)中能以分子形式吸附,每一个Li原子最多可吸附5个氢分子,氢分子的平均吸附能为0.460~2.276 kcal·mol^-1.其中Li原子修饰C2团簇的质量储氢分数最大,为34.72 wt%,表明了它在常温常压条件下作为储氢材料的可行性.  相似文献   

10.
利用密度泛函理论研究了H2分子在Li掺杂Al7C+团簇上的吸附.对于Al7C+团簇,H2分子的吸附能仅为-0.017eV,掺杂Li原子到Al7C+团簇可以明显增强对H2分子的吸附.吸附一个H2分子时吸附能可以达到-0.151eV,吸附四个H2分子的平均吸附能为-0.073eV.根据自然键轨道分析,电荷从Li原子向Al7C+团簇转移,带正电的Li离子极化H2分子并且增强了H2分子与Al7CLi+团簇之间的相互作用.  相似文献   

11.
祁鹏堂  陈宏善 《物理学报》2015,64(23):238102-238102
利用密度泛函理论研究了Li原子修饰的C24团簇的储氢性能. Li原子在C24团簇表面的最佳结合位是五元环. Li原子与C24团簇之间的作用强于Li原子之间的相互作用, 能阻止它们在团簇表面发生聚集. 当Li原子结合到C24表面时, 它们向C原子转移电子后带正电荷. 当氢分子接近这些Li原子时, 在电场作用下发生极化, 通过静电相互作用吸附在Li原子周围. 在Li修饰的C24复合物中, 每个Li原子能吸附两到三个氢分子, 平均吸附能处于0.08到0.13 eV/H2范围内. C24Li6能吸附12个氢分子, 储氢密度达到6.8 wt%.  相似文献   

12.
提出碱金属钠原子修饰笼形Si_6团簇的结构模型,采用密度泛函理论(DFT)研究钠原子修饰笼形Si_6团簇的结构及储氢性能.研究结果表明,氢分子与笼形Si_6团簇表面相互作用很弱,氢分子在其表面容易脱附.采用钠原子修饰笼形Si_6团簇后可有效避免氢分子的脱附,并且钠原子在笼形Si_6团簇的表面不发生团聚,有利于氢分子在其表面吸附和循环利用.研究发现在两个钠原子修饰笼形Si_6团簇的结构中,每个钠原子可以有效吸附六个氢分子.计算得到Na2Si_6团簇结构储氢的质量分数高达10.08 wt%,且氢分子的平均吸附能约为0.837 kcal/mol.可见,实现钠原子修饰笼形Si_6团簇结构在常温常压条件下储氢是有可能的.  相似文献   

13.
Based on density-functional theory, we find that B-doped graphene significantly enhances the Be adsorption energy and prevent Be atoms from clustering. The complex of Be adsorbed on B-doped graphene can serve as a high-capacity hydrogen storage medium: the hydrogen storage capacity (HSC) can reach up to 15.1 wt% with average adsorption energy ?0.298 eV/H2 for double-sided adsorption. It has exceeded the target specified by US Department of Energy with HSC of 9 wt% and a binding energy of ?0.2 to ?0.6 eV/H2 at near-ambient conditions. By analyzing the projected electronic density of states of the adsorbed system, we show that the high HSC is due to the change of electron distribution of H2 molecules and a graphene system decorated with B and Be atoms.  相似文献   

14.
利用杂化密度泛函B3LYP方法,在6-311+G(d,p)基组水平上对Si_6和Li修饰的Si_6团簇的几何结构和电子性质及储氢性能进行模拟计算和理论研究.结果表明,Si_6团簇最低能量构型为笼型结构,纯Si_6团簇不能有效吸附氢分子.Li原子的引入显著改善了Si_6团簇的储氢能力.以两个Li原子端位修饰Si_6团簇为载体,其氢分子的平均吸附能为1.692~2.755 kcal/mol,每个Li原子周围可以有效吸附五个氢分子,储氢密度可达9.952 wt%.合适的吸附能和较高储氢密度表明Li修饰Si_6团簇有望成为理想的储氢材料.  相似文献   

15.
The adsorption of hydrogen molecules on titanium-decorated (Ti-decorated) single-layer and bilayer graphenes is studied using density functional theory (DFT) with the relativistic effect. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for obtaining the region of the adsorption energy of H2 molecules on Ti-decorated graphene. We find that a graphene layer with titanium (Ti) atoms adsorbed on both sides can store hydrogen up to 9.51 wt% with average adsorption energy in a range from -0.170 eV to 0.518 eV. Based on the adsorption energy criterion, we find that chemisorption is predominant for H2 molecules when the concentration of H2 molecules absorbed is low while physisorption is predominant when the concentration is high. The computation results for the bilayer graphene decorated with Ti atoms show that the lower carbon layer makes no contribution to hydrogen adsorption.  相似文献   

16.
利用杂化密度泛函B3LYP方法, 在6-311+G(d, p)基组水平上对Si6和Li修饰的Si6团簇的几何结构和电子性质及储氢性能进行模拟计算和理论研究. 结果表明, Si6团簇最低能量构型为笼型结构, 纯Si6团簇不能有效吸附氢分子. Li原子的引入显著改善了Si6团簇的储氢能力. 以两个Li原子端位修饰Si6团簇为载体, 其氢分子的平均吸附能为1.692~2.755 kcal/mol, 每个Li原子周围可以有效吸附五个氢分子, 储氢密度可达9.952wt%. 合适的吸附能和较高储氢密度表明Li修饰Si6团簇有望成为理想的储氢材料.  相似文献   

17.
锂原子修饰B6团簇的储氢性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
阮文  罗文浪  余晓光  谢安东  伍冬兰 《物理学报》2013,62(5):53103-053103
利用密度泛函理论研究B6和LimB6 (m= 1–2)团簇的结构及其储氢性能. 结果表明, 氢分子在B6团簇的三种可能结构中均发生解离吸附, Li原子在B6团簇表面不发生团聚,每一个Li原子均吸附几个氢分子. 其中以两个Li原子修饰笼形B6团簇吸附完整氢分子数最多,储氢质量分数为20.38%, 氢分子的平均吸附能为1.683 kcal/mol,表明了它在常温常压条件下作为储氢材料的可行性. 关键词: mB6 (m=1-2)团簇')" href="#">LimB6 (m=1-2)团簇 密度泛函理论(DFT) 吸附能 储氢性能  相似文献   

18.
采用密度泛函理论(DFT)方法研究平面星形Li_6Si_6团簇的结构及其储氢性能.结果表明,氢分子能在平面星形Li_6Si_6团簇表面发生吸附,每个Li原子周围均可有效吸附三个氢分子,结构的稳定性及合适的吸氢条件表明平面星形Li_6Si_6团簇在常温常压条件下可以作为储氢媒介.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号