首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We use quantitative experimental and theoretical approaches to characterize the vibrational dynamics of the Fe atom in porphyrins designed to model heme protein active sites. Nuclear resonance vibrational spectroscopy (NRVS) yields frequencies, amplitudes, and directions for 57Fe vibrations in a series of ferrous nitrosyl porphyrins, which provide a benchmark for evaluation of quantum chemical vibrational calculations. Detailed normal mode predictions result from DFT calculations on ferrous nitrosyl tetraphenylporphyrin Fe(TPP)(NO), its cation [Fe(TPP)(NO)]+, and ferrous nitrosyl porphine Fe(P)(NO). Differing functionals lead to significant variability in the predicted Fe-NO bond length and frequency for Fe(TPP)(NO). Otherwise, quantitative comparison of calculated and measured Fe dynamics on an absolute scale reveals good overall agreement, suggesting that DFT calculations provide a reliable guide to the character of observed Fe vibrational modes. These include a series of modes involving Fe motion in the plane of the porphyrin, which are rarely identified using infrared and Raman spectroscopies. The NO binding geometry breaks the four-fold symmetry of the Fe environment, and the resulting frequency splittings of the in-plane modes predicted for Fe(TPP)(NO) agree with observations. In contrast to expectations of a simple three-body model, mode energy remains localized on the FeNO fragment for only two modes, an N-O stretch and a mode with mixed Fe-NO stretch and FeNO bend character. Bending of the FeNO unit also contributes to several of the in-plane modes, but no primary FeNO bending mode is identified for Fe(TPP)(NO). Vibrations associated with hindered rotation of the NO and heme doming are predicted at low frequencies, where Fe motion perpendicular to the heme is identified experimentally at 73 and 128 cm-1. Identification of the latter two modes is a crucial first step toward quantifying the reactive energetics of Fe porphyrins and heme proteins.  相似文献   

2.
Reaction of excess NO with the S = 3/2 Fe(III) complex (Et4N)2[Fe(PhPepS)(Cl)] (1) in protic solvents such as MeOH affords the {Fe-NO}(7) nitrosyl (Et(4)N)(2)[Fe(PhPepS)(NO)] (2). This distorted square-pyramidal S = 1/2 complex, a product of reductive nitrosylation, is the first example of an {Fe-NO}7 nitrosyl with carboxamido-N and thiolato-S coordination. When the same reaction is performed in aprotic solvents such as MeCN and DMF, the product is a dimeric diamagnetic {Fe-NO}6 complex, (Et4N)2-[{Fe(PhPepS)(NO)}2] (3). Both electrochemical and chemical oxidation of 2 leads to the formation of 3 via a transient five-coordinate {Fe-NO}6 intermediate. The oxidation is NO-centered. The ligand frame is not attacked by excess NO in these reactions.  相似文献   

3.
This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to (15)N(18)O isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm(-1). Normal coordinate analysis shows that the 437 cm(-1) mode corresponds to the Fe-NO stretch, whereas the 563 cm(-1) band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO.  相似文献   

4.
Reaction of excess NO with the non-heme Fe(III) complex [(bpb)Fe(py)2]ClO4 in MeCN under strictly anaerobic conditions affords the {Fe-NO}6(nitro)(nitrosyl) complex [(bpb)Fe(NO)(NO2)] (1) via metal-promoted NO disproportionation, while in a MeOH/MeCN mixture, the same reaction leads to reductive nitrosylation and generation of the {Fe-NO}7 species [(bpb)Fe(NO)] (2). Exposure of a solution of 1 in DMF to dioxygen leads to formation of the ring-nitrosylated product [(bpb-NO2)Fe(NO3)(DMF)] (3). The present system therefore exhibits all the NO reactivities reported so far with the iron-porphyrins.  相似文献   

5.
This paper investigates the interaction between five-coordinate ferric hemes with bound axial imidazole ligands and nitric oxide (NO). The corresponding model complex, [Fe(TPP)(MI)(NO)](BF4) (MI = 1-methylimidazole), is studied using vibrational spectroscopy coupled to normal coordinate analysis and density functional theory (DFT) calculations. In particular, nuclear resonance vibrational spectroscopy is used to identify the Fe-N(O) stretching vibration. The results reveal the usual Fe(II)-NO(+) ground state for this complex, which is characterized by strong Fe-NO and N-O bonds, with Fe-NO and N-O force constants of 3.92 and 15.18 mdyn/A, respectively. This is related to two strong pi back-bonds between Fe(II) and NO(+). The alternative ground state, low-spin Fe(III)-NO(radical) (S = 0), is then investigated. DFT calculations show that this state exists as a stable minimum at a surprisingly low energy of only approximately 1-3 kcal/mol above the Fe(II)-NO(+) ground state. In addition, the Fe(II)-NO(+) potential energy surface (PES) crosses the low-spin Fe(III)-NO(radical) energy surface at a very small elongation (only 0.05-0.1 A) of the Fe-NO bond from the equilibrium distance. This implies that ferric heme nitrosyls with the latter ground state might exist, particularly with axial thiolate (cysteinate) coordination as observed in P450-type enzymes. Importantly, the low-spin Fe(III)-NO(radical) state has very different properties than the Fe(II)-NO(+) state. Specifically, the Fe-NO and N-O bonds are distinctively weaker, showing Fe-NO and N-O force constants of only 2.26 and 13.72 mdyn/A, respectively. The PES calculations further reveal that the thermodynamic weakness of the Fe-NO bond in ferric heme nitrosyls is an intrinsic feature that relates to the properties of the high-spin Fe(III)-NO(radical) (S = 2) state that appears at low energy and is dissociative with respect to the Fe-NO bond. Altogether, release of NO from a six-coordinate ferric heme nitrosyl requires the system to pass through at least three different electronic states, a process that is remarkably complex and also unprecedented for transition-metal nitrosyls. These findings have implications not only for heme nitrosyls but also for group-8 transition-metal(III) nitrosyls in general.  相似文献   

6.
The six-coordinate nitrosyl sigma-bonded aryl(iron) and -(ruthenium) porphyrin complexes (OEP)Fe(NO)(p-C(6)H(4)F) and (OEP)Ru(NO)(p-C(6)H(4)F) (OEP = octaethylporphyrinato dianion) have been synthesized and characterized. Single-crystal X-ray structure determinations reveal an unprecedented bending and tilting of the MNO group for both [MNO](6) species as well as significant lengthening of trans axial bond distances. In (OEP)Fe(NO)(p-C(6)H(4)F) the Fe-N-O angle is 157.4(2) degrees, the nitrosyl nitrogen atom is tilted off of the normal to the heme plane by 9.2 degrees, Fe-N(NO) = 1.728(2) A, and Fe-C(aryl) = 2.040(3) A. In (OEP)Ru(NO)(p-C(6)H(4)F) the Ru-N-O angle is 154.9(3) degrees, the nitrosyl nitrogen atom is tilted off of the heme normal by 10.8 degrees, Ru-N(NO) = 1.807(3) A, and Ru-C(aryl) = 2.111(3) A. We show that these structural features are intrinsic to the molecules and are imposed by the strongly sigma-donating aryl ligand trans to the nitrosyl. Density functional-based calculations reproduce the structural distortions observed in the parent (OEP)Fe(NO)(p-C(6)H(4)F) and, combined with the results of extended Hückel calculations, show that the observed bending and tilting of the FeNO group indeed represent a low-energy conformation. We have identified specific orbital interactions that favor the unexpected bending and tilting of the FeNO group. The aryl ligand also affects the Fe-NO pi-bonding as measured by infrared and (57)Fe M?ssbauer spectroscopies. The solid-state nitrosyl stretching frequencies for the iron complex (1791 cm(-)(1)) and the ruthenium complex (1773 cm(-)(1)) are significantly reduced compared to their respective [MNO](6) counterparts. The M?ssbauer data for (OEP)Fe(NO)(p-C(6)H(4)F) yield the quadrupole splitting parameter +0.57 mm/s and the isomer shift 0.14 mm/s at 4.2 K. The results of our study show, for the first time, that bent Fe-N-O linkages are possible in formally ferric nitrosyl porphyrins.  相似文献   

7.
An Fe(II) carbonyl complex [(PaPy3)Fe(CO)](ClO4) (1) of the pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy3H, H is the dissociable amide proton) has been synthesized and structurally characterized. This Fe(II) carbonyl exhibits its nu(CO) at 1972 cm(-1), and its 1H NMR spectrum in degassed CD3CN confirms its S = 0 ground state. The bound CO in 1 is not photolabile. Reaction of 1 with an equimolar amount of NO results in the formation of the {Fe-NO}7 nitrosyl [(PaPy3)Fe(NO)](ClO4) (2), while excess NO affords the iron(III) nitro complex [(PaPy3)Fe(NO2)](ClO4) (5). In the presence of [Fe(Cp)2]+ and excess NO, 1 forms the {Fe-NO}6 nitrosyl [(PaPy3)Fe(NO)](ClO4)2 (3). Complex 1 also reacts with dioxygen to afford the iron(III) mu-oxo species [{(PaPy3)Fe}2O](ClO4)2 (4). Comparison of the metric and spectral parameters of 1 with those of the previously reported {Fe-NO}6,7 nitrosyls 3 and 2 provides insight into the electronic distributions in the Fe(II)-CO, Fe(II)-NO, and Fe(II)-NO+ bonds in the isostructural series of complexes 1-3 derived from a non-heme polypyridine ligand with one carboxamide group.  相似文献   

8.
Using magnetic circular dichroism (MCD) spectroscopy together with DFT calculations, the spin density distributions in five-coordinate [Fe(TPP)(NO)] (I) and six-coordinate [Fe(TPP)(MI)(NO)] (II, MI = 1-methylimidazole) are defined. In the five-coordinate complex, a strong Fe-NO sigma bond between pi(*)(h) and d(z)(2) is present that leads to a large transfer of spin density from the NO ligand to Fe(II) corresponding to an electronic structure with noticeable Fe(I)-NO(+) character. Consequently, the MCD spectrum is dominated by paramagnetic C-term contributions. On coordination of the sixth ligand, the spin density is pushed back from the iron toward the NO ligand, resulting in an Fe(II)-NO(radical) type of electronic structure. This is reflected by the fact that the MCD spectrum is dominated by diamagnetic contributions.  相似文献   

9.
The resonance Raman (RR) spectra of nitrophorin 1 (NP1) from the saliva of the blood-sucking insect Rhodnius prolixus, in the absence and presence of nitric oxide (NO) and in the presence of cyanide (CN(-)), have been studied. The NP1 displayed RR spectra characteristic of six-coordinate high-spin (6cHS) ferric heme at room temperature and six-coordinate low-spin heme (6cLS) at low temperature (77 K). NO and CN(-) each bind to Fe(III), both ligands forming 6cLS complexes with NP1. The Fe(III)-NO stretching and bending vibrational frequencies of nitrosyl NP1 were identified at 591 and 578 cm(-1), respectively, on the basis of 15NO isotope shifts. These frequencies are typical of Fe-NO ferric heme proteins, indicating that the NP1 nitrosyl adduct has typical bond strength. Thus, the small NO release rate displayed by NP1 must be due to other protein interactions. Room and cryogenic temperature (77 K) RR spectroscopy and 13C, 15N, and 13C15N isotope substitutions have been used to determine vibrational mode frequencies associated with the Fe(III)-CN(-) bond for the cyano adducts at 454, 443, 397, and 357 cm(-1). The results were analyzed by normal mode calculations to support the assignment of the modes and to assess the NO and CN(-) binding geometries. The observed isotope shifts for the cyano NP1 are smaller than expected and reveal vibrational coupling of Fe(III)-CN(-) modes with heme modes. We also find that the observed frequencies are consistent with the presence of a nearly linear Fe(III)CN(-) linkage (173 degrees ) coexisting with a population with a bent structure (155 degrees ).  相似文献   

10.
In this paper, the differences in the spectroscopic properties and electronic structures of five- and six-coordinate iron(II) porphyrin NO complexes are explored using [Fe(TPP)(NO)] (1; TPP = tetraphenylporphyrin) and [Fe(TPP)(MI)(NO)] (2; MI = 1-methylimidazole) type systems. Binding of N-donor ligands in axial position trans to NO to five-coordinate complexes of type 1 is investigated using UV-vis absorption and 1H NMR spectroscopies. This way, the corresponding binding constants Keq are determined and the 1H NMR spectra of 1 and 2 are assigned for the first time. In addition, 1H NMR allows for the determination of the degree of denitrosylation in solutions of 1 with excess base. The influence of the axial ligand on the properties of the coordinated NO is then investigated. Vibrational spectra (IR and Raman) of 1 and 2 are presented and assigned using isotope substitution and normal-coordinate analysis. Obtained force constants are 12.53 (N-O) and 2.98 mdyn/A (Fe-NO) for 1 compared to 11.55 (N-O) and 2.55 mdyn/A (Fe-NO) for 2. Together with the NMR results, this provides experimental evidence that binding of the trans ligand weakens the Fe-NO bond. The principal bonding schemes of 1 and 2 are very similar. In both cases, the Fe-N-O subunit is strongly bent. Donation from the singly occupied pi* orbital of NO into d(z2) of iron(II) leads to the formation of an Fe-NO sigma bond. In addition, a medium-strong pi back-bond is present in these complexes. The most important difference in the electronic structures of 1 and 2 occurs for the Fe-NO sigma bond, which is distinctively stronger for 1 in agreement with the experimental force constants. The increased sigma donation from NO in 1 also leads to a significant transfer of spin density from NO to iron, as has been shown by magnetic circular dichroism (MCD) spectroscopy in a preceding Communication (Praneeth, V. K. K.; Neese, F.; Lehnert, N. Inorg. Chem. 2005, 44, 2570-2572). This is confirmed by the 1H NMR results presented here. Hence, further experimental and computational evidence is provided that complex 1 has noticeable Fe(I)NO+ character relative to 2, which is an Fe(II)NO(radical) complex. Finally, using MCD theory and quantum chemical calculations, the absorption and MCD C-term spectra of 1 and 2 are assigned for the first time.  相似文献   

11.
We report the results of a series of density functional theory (DFT) calculations of the M?ssbauer quadrupole splittings and isomer shifts in NO heme model compounds, together with the results of calculations of the M?ssbauer quadrupole splittings, isomer shifts, and electron paramagnetic resonance hyperfine coupling constants in a model Fe(II)(NO)(imidazole) complex as a function of Fe-NO bond length and Fe-N-O bond angle. The results of the M?ssbauer quadrupole splitting and isomer shift calculations on the NO heme model compounds show good accord between theory and experiment, with the largest errors being observed for structures having the largest crystallographic R(1) values. The results of the property surface calculations were then used to calculate Fe-NO bond length and Fe-N-O bond angle probability surfaces (Z-surfaces) for a nitrosyl hemoglobin, using, in addition, an energy filter. The results obtained yielded a most probable Fe-NO bond length (r) of 1.79 A and an Fe-N-O bond angle (beta) of 136 degrees -137 degrees. This bond length is somewhat longer than those observed in most model compounds but may be due, at least in part, to hydrogen bond formation with the distal His residue. Bond elongation was also observed in a geometry optimized Fe(II)(NO)(imidazole) complex hydrogen bonded to an imidazole residue, in which we find r = 1.76-1.78 A and beta = 137 degrees -138 degrees. The computed bond angles are close to the canonical approximately 140 degrees value found in most model systems. Highly bent Fe-N-O bond angles or very long Fe-NO bond lengths seem unlikely to occur in proteins, due to their high energies. We also investigated the molecular orbitals and spin densities in each of the six coordinate systems investigated and found the orbitals and spin densities to be generally similar those described previously for five coordinate systems. Taken together, these results show that M?ssbauer quadrupole splittings and isomer shifts, in addition to electron paramagnetic resonance hyperfine coupling constants, can now be calculated for nitrosyl heme systems with relatively good accuracy and that the results so obtained can be used to determine Fe-N-O geometries in metalloproteins. The Z-surface approach is thus applicable to both diamagnetic (CO) and paramagnetic (NO) heme proteins with in both cases the metal-ligand binding geometries found in the proteins being very close to those seen in model systems.  相似文献   

12.
We report structural and spectroscopic data for a series of six-coordinate (nitrosyl)iron(II) porphyrinates. The structures of three tetraphenylporphyrin complexes [Fe(TPP)(NO)(L)], where L = 4-(dimethylamino)pyridine, 1-methylimidazole, 4-methylpiperidine, are reported here to a high degree of precision and allow observation of several previously unobserved structural features. The tight range of bonding parameters for the [FeNO] moiety for these three complexes suggests a canonical representation for six-coordinate systems (Fe-N(p) = 2.007 A, Fe-N(NO) = 1.753 A, angle FeNO = 138.5 degrees ). Comparison of these data with those obtained previously for five-coordinate systems allows the precise determination of the structural effects of binding a sixth ligand. These include lengthening of the Fe-N(NO) bond and a decrease in the Fe-N-O angle. Several other aspects of the geometry of these systems are also discussed, including the first examples of off-axis tilting of a nitrosyl ligand in a six-coordinate [FeNO](7) heme system. We also report the first examples of M?ssbauer studies for these complexes. Measurements have been made in several applied magnetic fields as well as in zero field. The spectra differ from those of their five-coordinate analogues. To obtain reasonable fits to applied magnetic field data, rotation of the electrical field gradient is required, consistent with differing g-tensor orientations in the five- vs six-coordinate species.  相似文献   

13.
Lu TT  Lai SH  Li YW  Hsu IJ  Jang LY  Lee JF  Chen IC  Liaw WF 《Inorganic chemistry》2011,50(12):5396-5406
In addition to probing the formation of dinitrosyl iron complexes (DNICs) by the characteristic Fe K-edge pre-edge absorption energy ranging from 7113.4 to 7113.8 eV, the distinct S K-edge pre-edge absorption energy and pattern can serve as an efficient tool to unambiguously characterize and discriminate mononuclear DNICs and dinuclear DNICs containing bridged-thiolate and bridged-sulfide ligands. The higher Fe-S bond covalency modulated by the stronger electron-donating thiolates promotes the Fe → NO π-electron back-donation to strengthen the Fe-NO bond and weaken the NO-release ability of the mononuclear DNICs, which is supported by the Raman ν(Fe-NO) stretching frequency. The Fe-S bond covalency of DNICs further rationalizes the binding preference of the {Fe(NO)(2)} motif toward thiolates following the trend of [SEt](-) > [SPh](-) > [SC(7)H(4)SN](-). The relative d-manifold energy derived from S K-edge XAS as well as the Fe K-edge pre-edge energy reveals that the electronic structure of the {Fe(NO)(2)}(9) core of the mononuclear DNICs [(NO)(2)Fe(SR)(2)](-) is best described as {Fe(III)(NO(-))(2)}(9) compared to [{Fe(III)(NO(-))(2)}(9)-{Fe(III)(NO(-))(2)}(9)] for the dinuclear DNICs [Fe(2)(μ-SEt)(μ-S)(NO)(4)](-) and [Fe(2)(μ-S)(2)(NO)(4)](2-).  相似文献   

14.
Detailed Fe vibrational spectra have been obtained for the heme model complex [Fe(TPP)(CO)(1-MeIm)] using a new, highly selective and quantitative technique, Nuclear Resonance Vibrational Spectroscopy (NRVS). This spectroscopy measures the complete vibrational density of states for iron atoms, from which normal modes can be calculated via refinement of the force constants. These data and mode assignments can reveal previously undetected vibrations and are useful for validating predictions based on optical spectroscopies and density functional theory, for example. Vibrational modes of the iron porphyrin-imidazole compound [Fe(TPP)(CO)(1-MeIm)] have been determined by refining normal mode calculations to NRVS data obtained at an X-ray synchrotron source. Iron dynamics of this compound, which serves as a useful model for the active site in the six-coordinate heme protein, carbonmonoxy-myoglobin, are discussed in relation to recently determined dynamics of a five-coordinate deoxy-myoglobin model, [Fe(TPP)(2-MeHIm)]. For the first time in a six-coordinate heme system, the iron-imidazole stretch mode has been observed, at 226 cm(-)(1). The heme in-plane modes with large contributions from the nu(42), nu(49), nu(50), and nu(53) modes of the core porphyrin are identified. In general, the iron modes can be attributed to coupling with the porphyrin core, the CO ligand, the imidazole ring, and/or the phenyl rings. Other significant findings are the observation that the porphyrin ring peripheral substituents are strongly coupled to the iron doming mode and that the Fe-C-O tilting and bending modes are related by a negative interaction force constant.  相似文献   

15.
Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.  相似文献   

16.
The effect of trans thiolate ligation on the coordinated nitric oxide in ferric heme nitrosyl complexes as a function of the thiolate donor strength, induced by variation of NH-S(thiolate) hydrogen bonds, is explored. Density functional theory (DFT) calculations (BP86/TZVP) are used to define the electronic structures of corresponding six-coordinate ferric [Fe(P)(SR)(NO)] complexes. In contrast to N-donor-coordinated ferric heme nitrosyls, an additional Fe-N(O) sigma interaction that is mediated by the dz2/dxz orbital of Fe and a sigma*-type orbital of NO is observed in the corresponding complexes with S-donor ligands. Experimentally, this is reflected by lower nu(N-O) and nu(Fe-N) stretching frequencies and a bent Fe-N-O moiety in the thiolate-bound case.  相似文献   

17.
Understanding the chemical nature of the nitric oxide (NO) moiety of nitrosylheme copper oxidases is crucial for elucidation of the NO activation process. In the present work, direct resonance Raman spectroscopic observation of both the Fe(2+)-NO and the N-O stretching modes unambiguously establishes the vibrational characteristics of the NO-bound heme moiety in cytochrome cbb(3) from Pseudomonas stutzeri. Addition of NO to fully reduced enzyme causes the rupture of the proximal His-heme b(3) bond resulting in the formation of a five-coordinate heme b(3)(2+)-NO species with nu(Fe-NO) and nu(NO) at 524 and 1679 cm(-1), respectively. The frequencies of the nitrosyl species we detect are very similar to those obtained in other model- and protein heme-NO complexes. To account for this observation, we propose a model describing the oxidation and ligand-binding states in fully reduced cytochrome cbb(3) upon addition of NO.  相似文献   

18.
The reaction of the water-soluble Fe(III)(TMPS) porphyrin with CN(-) in basic solution leads to the stepwise formation of Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2). The kinetics of the reaction of CN(-) with Fe(III)(TMPS)(CN)(H(2)O) was studied as a function of temperature and pressure. The positive value of the activation volume for the formation of Fe(III)(TMPS)(CN)(2) is consistent with the operation of a dissociatively activated mechanism and confirms the six-coordinate nature of the monocyano complex. A good agreement between the rate constants at pH 8 and 9 for the formation of the dicyano complex implies the presence of water in the axial position trans to coordinated cyanide in the monocyano complex and eliminates the existence of Fe(III)(TMPS)(CN)(OH) under the selected reaction conditions. Both Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2) bind nitric oxide (NO) to form the same nitrosyl complex, namely, Fe(II)(TMPS)(CN)(NO(+)). Kinetic studies indicate that nitrosylation of Fe(III)(TMPS)(CN)(2) follows a limiting dissociative mechanism that is supported by the independence of the observed rate constant on [NO] at an appropriately high excess of NO, and the positive values of both the activation parameters ΔS(?) and ΔV(?) found for the reaction under such conditions. The relatively small first-order rate constant for NO binding, namely, (1.54 ± 0.01) × 10(-2) s(-1), correlates with the rate constant for CN(-) release from the Fe(III)(TMPS)(CN)(2) complex, namely, (1.3 ± 0.2) × 10(-2) s(-1) at 20 °C, and supports the proposed nitrosylation mechanism.  相似文献   

19.
Low-temperature interaction of nitrogen base ligands with layered Co(TTP)(NO) (TTP = meso-tetratolylporphyrinato dianion) as well as its toluene solution leads to the formation of the first six-coordinate species of the general formula (B)Co(TTP)(NO) (where B = piperidine and pyridine). The nu(NO) stretching bands of these species appear at lower frequencies compared with the five-coordinate nitrosyl derivative and depend on the nature of the trans axial ligand. The equilibrium constants and enthalpies of formation of these new species are determined. Fairly stable at low-temperature conditions in the solid state, they slowly dissociate the nitrogen base ligands upon warming to restore the five-coordinate nitrosyl complex Co(TTP)(NO).  相似文献   

20.
Electron absorption and Fourier-transform IR spectroscopy was used to determine that the reaction of 1-methylimidazole (1-MeIm) with a nitrosyl complex of meso-tetra-p-tolylporphyrinate cobalt (Co(TTP)(NO)) at 210—240 K led to the formation of the six-coordinate complex (1-MeIm)Co(TTP)(NO), which was stable at low temperatures both in the solid state and in a solution of toluene. Based on the temperature dependence of the equilibrium constants, the thermodynamic parameters of complexation were calculated, which indicated a weak binding of the 1-methylimidazole ligand with the Co-porphyrin nitrosyl complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号